Have a personal or library account? Click to login
Set-membership identifiability of nonlinear models and related parameter estimation properties Cover

Set-membership identifiability of nonlinear models and related parameter estimation properties

Open Access
|Dec 2016

References

  1. Alamo, T., Bravo, J.M. and Camacho, E.F. (2005). Guaranteed state estimation by zonotopes, Automatica 41(6): 1035-1043.10.1016/j.automatica.2004.12.008
  2. Auer, E., Kiel, S. and Rauh, A. (2013). A verified method for solving piecewise smooth initial value problems, International Journal of Applied Mathematics and Computer Science 23(4): 731-747, DOI: 10.2478/amcs-2013-0055.10.2478/amcs-2013-0055
  3. Boulier, F. (1994). Study and Implementation of Some Algorithms in Differential Algebra, Ph.D. thesis, Université des Sciences et Technologie de Lille, Lille.
  4. Bourbaki, N. (1989). Elements of Mathematics, Springer-Verlag, Berlin/Heidelberg.
  5. Braems, I., Jaulin, L., Kieffer, M. and Walter, E. (2001). Guaranteed numerical alternatives to structural identifiability testing, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 3122-3127.
  6. Chabert, G. and Jaulin, L. (2009). Contractor programming, Artificial Intelligence 173(11): 1079-1100.10.1016/j.artint.2009.03.002
  7. Chiscii, L., Garulli, A. and Zappa, G. (1996). Recursive state bounding by parallelotopes, Automatica 32(7): 1049-1055.10.1016/0005-1098(96)00048-9
  8. Denis-Vidal, L., Joly-Blanchard, G. and Noiret, C. (2001a). Some effective approaches to check identifiability of uncontrolled nonlinear systems, Mathematics and Computers in Simulation 57(1-2): 35-44.10.1016/S0378-4754(01)00274-9
  9. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C. and Petitot, M. (2001b). An algorithm to test identifiability of non-linear systems, Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia, Vol. 7, pp. 174-178.
  10. Herrero, P., Delaunay, B., Jaulin, L., Georgiou, P., Oliver, N. and Toumazou, C. (2016). Robust set-membership parameter estimation of the glucose minimal model, International Journal of Adaptive Control and Signal Processing 30(2): 173-185.10.1002/acs.2538
  11. Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2011). Set-membership identifiability: Definitions and analysis, Proceedings of the 18th IFAC World Congress, Milan, Italy, pp. 12024-12029.
  12. Jauberthie, C., Verdière, N. and Travé-Massuyès, L. (2013). Fault detection and identification relying on set-membership identifiability, Annual Reviews in Control 37(1): 129-136.10.1016/j.arcontrol.2013.04.002
  13. Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, Londres.10.1007/978-1-4471-0249-6
  14. Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear bounded-error estimation, Automatica 29(4): 1053-1064.10.1016/0005-1098(93)90106-4
  15. Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis, International Journal of Adaptive Control and Signal Processing 6(3): 193-218.10.1002/acs.680
  16. Kieffer, M., Jaulin, L.,Walter, É. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337-362.10.1023/A:1009990700281
  17. Kieffer, M. and Walter, E. (2011). Guaranteed estimation of the parameters of nonlinear continuous-time models: Contributions of interval analysis, International Journal of Adaptive Control and Signal Processing 25(3): 191-207.10.1002/acs.1194
  18. Kolchin, E. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York, NY.
  19. Kurzhanski, A.B. and Valyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Nelson Thornes, Birkhäuser.10.1007/978-1-4612-0277-6
  20. Lagrange, S., Delanoue, N. and Jaulin, L. (2008). Injectivity analysis using interval analysis: Application to structural identifiability, Automatica 44(11): 2959-2962.10.1016/j.automatica.2008.04.018
  21. Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations, Automatica 30(2): 265-276.10.1016/0005-1098(94)90029-9
  22. Maiga, M., Ramdani, N. and Travé-Massuyès, L. (2013). A fast method for solving guard set intersection in nonlinear hybrid reachability, Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, Firenze, Italy, pp. 508-513.
  23. Maiga, M., Ramdani, N., Travé-Massuyès, L. and Combastel, C. (2016). A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control 61(9): 2341-2356, DOI:10.1109/TAC.2015.2491740.10.1109/TAC.2015.2491740
  24. Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, É. (2013). Bounding Approaches to System Identification, Springer Science & Business Media, New York, NY.
  25. Munkres, J.R. (1975). Topology-A First Course, Prentice Hall, Upper Saddle River, NJ.
  26. Nelles, O. (2002). Nonlinear System Identification, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-662-04323-3_15
  27. Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution, Mathematical Biosciences 41(1): 21-33.10.1016/0025-5564(78)90063-9
  28. Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006-010-0046-y.10.2478/v10006-010-0046-y
  29. Raïssi, T., Ramdani, N. and Candau, Y. (2004). Set-membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40(10): 1771-1777.10.1016/j.automatica.2004.05.006
  30. Ravanbod, L., Verdière, N. and Jauberthie, C. (2014). Determination of set-membership identifiability sets, Mathematics in Computer Science 8(3-4): 391-406.10.1007/s11786-014-0201-1
  31. Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849-862, DOI: 10.1515/amcs-2015-0061.10.1515/amcs-2015-0061
DOI: https://doi.org/10.1515/amcs-2016-0057 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 803 - 813
Submitted on: Mar 10, 2016
Accepted on: Aug 28, 2016
Published on: Dec 30, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Carine Jauberthie, Louise Travé-MassuyèEs, Nathalie Verdière, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.