Have a personal or library account? Click to login
A metaheuristic for a numerical approximation to the mass transfer problem Cover

References

  1. Anderson, E. and Nash, P. (1987). Linear Programming in Infinite-dimensional Spaces, Wiley, New York, NY.
  2. Anderson, E. and Philpott, A. (1984). Duality and an algorithm for a class of continuous transportation problems, Mathematics of Operations Research 9(2): 222-231.10.1287/moor.9.2.222
  3. Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. (2010). Linear Programming and Network Flows,Wiley-Interscience, Hoboken, NJ.10.1002/9780471703778
  4. Benamou, J. (2003). Numerical resolution of an unbalanced mass transport problem, ESAIM Mathematical Modelling and Numerical Analysis 37(5): 851-868.10.1051/m2an:2003058
  5. Benamou, J. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numerische Mathematik 84(3): 375-393.10.1007/s002110050002
  6. Bosc, D. (2010). Numerical approximation of optimal transport maps, SSRN Electronic Journal, DOI: 10.2139/ssrn.1730684.10.2139/ssrn.1730684
  7. Caffarelli, L., Feldman, M. and McCann, R. (2002). Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs, Journal of the American Mathematical Society 15(1): 1-26.10.1090/S0894-0347-01-00376-9
  8. Gabriel, J., González-Hernández, J. and López-Martínez, R. (2010). Numerical approximations to the mass transfer problem on compact spaces, IMA Journal of Numerical Analysis 30(4): 1121-1136.10.1093/imanum/drn076
  9. Glover, F. (1998). A template for scatter search and path relinking, in J.-K. Hao et al. (Eds.), Artificial Evolution, Lecture Notes in Computer Science, Vol. 1363, Springer, Berlin/Heidelberg, pp. 1-51.10.1007/BFb0026589
  10. González-Hernández, J., Gabriel, J. and Hernández-Lerma, O. (2006). On solutions to the mass transfer problem, SIAM Journal on Optimization 17(2): 485-499.10.1137/050623991
  11. Guittet, K. (2003). On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques, SIAM Journal on Numerical Analysis 41(1): 382-399.10.1137/S0036142901386069
  12. Haker, S., Zhu, L., Tannenbaum, A. and Angenent, S. (2004). Optimal mass transport for registration and warping, International Journal of Computer Vision 63(3): 225-240.10.1023/B:VISI.0000036836.66311.97
  13. Hanin, L., Rachev, S. and Yakovlev, A. (1993). On the optimal control of cancer radiotherapy for non-homogeneous cell population, Advances in Applied Probability 25(1): 1-23.10.2307/1427493
  14. Hernández-Lerma, O. and Gabriel, J. (2002). Strong duality of the Monge-Kantorovich mass transfer problem in metric spaces, Mathematische Zeitschrift 239(3): 579-591.10.1007/s002090100325
  15. Hernández-Lerma, O. and Lasserre, J. (1998). Approximation schemes for infinite linear programs, SIAM Journal on Optimization 8(4): 973-988.10.1137/S1052623497315768
  16. Kantorovich, L. (2006a). On a problem of Monge, Journal of Mathematical Sciences 133(4): 225-226.10.1007/s10958-006-0050-9
  17. Kantorovich, L. (2006b). On the translocation of masses, Journal of Mathematical Sciences 133(4): 1381-1382.10.1007/s10958-006-0049-2
  18. Laguna, M., Gortázar, F., Gallego, M., Duarte, A. and Martí, R. (2014). A black-box scatter search for optimization problems with integer variables, Journal of Global Optimization 58(3): 497-516.10.1007/s10898-013-0061-2
  19. Levin, V. (2006). Optimality conditions and exact solutions to the two-dimensional Monge-Kantorovich problem, Journal of Mathematical Sciences 133(4): 1456-1463.10.1007/s10958-006-0061-6
  20. Martí, R., Laguna, M. and Glover, F. (2006). Principles of scatter search, European Journal of Operational Research 169(2): 359-372.10.1016/j.ejor.2004.08.004
  21. Mèrigot, Q. (2011). A multiscale approach to optimal transport, Computer Graphics Forum 30(5): 1583-1592.10.1111/j.1467-8659.2011.02032.x
  22. Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais, De l’Imprimerie Royale, Paris.
  23. Rachev, S. (1991). Probability Metrics and the Stability of Stochastic Models, Wiley, New York, NY.
  24. Rachev, S. and Rüschendorf, L. (1998). Mass Transportation Problems, Vol. I, Springer, New York, NY.
DOI: https://doi.org/10.1515/amcs-2016-0053 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 757 - 766
Submitted on: Dec 9, 2016
Accepted on: Aug 10, 2016
Published on: Dec 30, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Martha L. Avendaño-Garrido, José R. Gabriel-Argüelles, Ligia Quintana-Torres, Efrén Mezura-Montes, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.