Have a personal or library account? Click to login
A dynamically adaptive lattice Boltzmann method for thermal convection problems Cover

A dynamically adaptive lattice Boltzmann method for thermal convection problems

Open Access
|Dec 2016

References

  1. Abdelhadi, B., Hamza, G., Razik, B. and Raouache, E. (2006). Natural convection and turbulent instability in cavity, WSEAS Transactions on Heat and Mass Transfer 1(2): 179-184.
  2. Alexander, F.J., Chen, S. and Sterling, J.D. (1993). Lattice Boltzmann thermohydrodynamics, Physical Review E 47: 2249-2252.10.1103/PhysRevE.47.R2249
  3. Azwadi Che Sidik, N. and Irwan, M. (2010). Simplified mesoscale lattice Boltzmann numerical model for prediction of natural convection in a square enclosure filled with homogeneous porous media, WSEAS Transactions on Fluid Mechanics 3(5): 186-195.
  4. Azwadi Che Sidik, N. and Syahrullail, S. (2009). A three-dimension double-population thermal lattice BGK model for simulation of natural convection heat transfer in a cubic cavity, WSEAS Transactions on Mathematics 8(9): 561-571.
  5. Berger, M. and Colella, P. (1988). Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics 82(1): 64-84.10.1016/0021-9991(89)90035-1
  6. Bhatnagar, P., Gross, E. and Krook, M. (1954). A model for collisional processes in gases, I: Small amplitude processes in charged and in neutral one-component systems, Physical Review 94(3): 511-525.10.1103/PhysRev.94.511
  7. Bouzidi, M., Firdaouss, M. and Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics of Fluids 13(11): 3452-3459.10.1063/1.1399290
  8. Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C. and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation, Physica A 362(1): 158-167.10.1016/j.physa.2005.09.036
  9. Chen, H. and Teixeira, C. (2000). H-theorem and origins of instability in thermal lattice Boltzmann models, Computer Physics Communications 129(1): 21-31.10.1016/S0010-4655(00)00089-8
  10. Chen, S. and Doolen, G. (1998). Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics 30: 329-364.10.1146/annurev.fluid.30.1.329
  11. Coutanceau, M. and Menard, C. (1985). Influence of rotation on the near-wake development behind an impulsively started circular cylinder, Journal of Fluid Mechanics 158: 399-446.10.1017/S0022112085002713
  12. De Vahl Davis, G. (1983). Natural convection of air in a square cavity a benchmark numerical solution, International Journal for Numerical Methods in Fluids 3(3): 249-264.10.1002/fld.1650030305
  13. Deiterding, R. (2011). Block-structured adaptive mesh refinement-theory, implementation and application, ESAIM Proceedings 34: 97-150.10.1051/proc/201134002
  14. Deller, P. (2002). Lattice kinetic schemes for magnetohydrodynamics, Journal of Computational Physics 179(1): 95-126.10.1006/jcph.2002.7044
  15. Dupuis, A. and Chopard, B. (2003). Theory and applications of an alternative lattice Boltzmann grid refinement algorithm, Physica E 67: 066707.10.1103/PhysRevE.67.066707
  16. Fusegi, T., Hyun, J., Kuwahara, K. and Farouk, B. (1991). A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, International Journal of Heat and Mass Transfer 34(6): 1543-1557.10.1016/0017-9310(91)90295-P
  17. Guo, Z., Shi, B. and Zheng, C. (2002). A coupled lattice BGK model for the Boussinesq equations, International Journal for Numerical Methods in Fluids 39(4): 325-342.10.1002/fld.337
  18. Hähnel, D. (2004). Molekulare Gasdynamik, Springer, Heidelberg.
  19. He, N.-Z., Wang, N.-C., Shi, B.-C. and Guo, Z.-L. (2004). A unified incompressible lattice BGK model and its application to three-dimensional lid-driven cavity flow, Chinese Physics 13(1): 40-46.10.1088/1009-1963/13/1/009
  20. He, X., Chen, S. and Doolen, G. (1998). A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of Computational Physics 146(1): 282-300.10.1006/jcph.1998.6057
  21. He, X. and Luo, L.-S. (1997). Lattice Boltzmann model for the incompressible Navier-Stokes equation, Journal of Statistical Physics 88(3): 927-944.10.1023/B:JOSS.0000015179.12689.e4
  22. Jonas, L., Chopard, B., Succi, S. and Toschi, F. (2006). Numerical analysis of the average flow field in a turbulent lattice Boltzmann simulation, Physica A 32(1): 6-10.10.1016/j.physa.2005.09.016
  23. Kuznik, F., Vareilles, J., Rusaouen, G. and Kraiss, G. (2007). A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity, International Journal of Heat and Fluid Flow 28(5): 862-870.10.1016/j.ijheatfluidflow.2006.10.002
  24. Lai, H. and Yan, Y. (2001). The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthohonal grids, International Journal of Numerical Methods for Heat & Fluid Flow 11(6): 524-546.10.1108/EUM0000000005667
  25. Lee, T. and Lin, C. (2005). A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, Journal of Computational Physics 206(1): 16-47.10.1016/j.jcp.2004.12.001
  26. Li, L., Mei, R. and Klausner, J. (2013). Boundary conditions for thermal lattice Boltzmann equation method, Journal of Computational Physics 237(1): 366-395.10.1016/j.jcp.2012.11.027
  27. McNamara, G. and Alder, B. (1993). Analysis of lattice Boltzmann treatment of hydrodynamics, Physica A 194(1): 218-228.10.1016/0378-4371(93)90356-9
  28. Mohamad, A. (2011). Lattice Boltzmann Method- Fundamentals and Engineering Applications with Computer Codes, Springer, London.10.1007/978-0-85729-455-5
  29. Mohamad, A. and Kuzmin, A. (2010). A critical evaluation of force term in lattice Boltzmann method, natural convection problem, International Journal of Heat and Mass Transfer 53: 990-996.10.1016/j.ijheatmasstransfer.2009.11.014
  30. Peng, Y., Shu, C. and Che, Y. (2003). A 3D incompressible thermal lattice Boltzman model and its application to simulation natural convection in a cubic cavity, Journal of Computational Physics 193(1): 260-274.10.1016/j.jcp.2003.08.008
  31. Qian, Y. (1993). Simulating thermohydrodynamics with lattice BGK models, Journal of Scientific Computing 8(3): 231-241.10.1007/BF01060932
  32. Qian, Y., D’Humires, D. and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation, Europhysics Letters 17(6): 479-484.10.1209/0295-5075/17/6/001
  33. Succi, S. (2001). The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford.
  34. Yan, Y. and Zu, Y. (2008). Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder-A LBM approach, International Journal of Heat and Mass Transfer 51(9-10): 2519-2536.10.1016/j.ijheatmasstransfer.2007.07.053
  35. Yu, Z. and Fan, L.-S. (2009). An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation, Journal of Computational Physics 230(17): 6456-6478.10.1016/j.jcp.2009.05.034
DOI: https://doi.org/10.1515/amcs-2016-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 735 - 747
Submitted on: Sep 30, 2015
Accepted on: Jun 8, 2016
Published on: Dec 30, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Kai Feldhusen, Ralf Deiterding, Claus Wagner, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.