Betts, J. (2011). A robust approximation for setting target inventory levels in a constrained production environment, Procedia Computer Science4: 1262–1271.10.1016/j.procs.2011.04.136
Blanchini, F., Miani, S. and Ukovich, W. (2000). Control of production-distribution systems with unknown inputs and system failures, IEEE Transactions on Automatic Control45(6): 1072–1081.10.1109/9.863593
Blanchini, F., Rinaldi, F. and Ukovich, W. (1997). Least inventory control of multistorage systems with non-stochastic unknown inputs, IEEE Transactions on Robotics and Automation13(5): 633–645.10.1109/70.631225
Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y. and Weber, P. (2014). Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed, Reliability Engineering & System Safety132: 196–206.10.1016/j.ress.2014.07.013
Ellis, M., Durand, H. and Christofides, P. (2014). A tutorial review of economic model predictive control methods, Journal of Process Control24(8): 1156–1178.10.1016/j.jprocont.2014.03.010
Gallestey, E., Stothert, A., Antoine, M. and Morton, S. (2002). Model predictive control and the optimization of power plant load while considering lifetime consumption, IEEE Transactions on Power Systems17(1): 186–191.10.1109/59.982212
Goetschalckx, M. (2011). Advanced supply chain models, in F. Hillier and C. Price (Eds.), Supply Chain Engineering, International Series in Operations Research & Management Science, Vol. 161, Springer US, New York, NY, pp. 615–670.10.1007/978-1-4419-6512-7_13
Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P. and Sun, Y. (2009). A review on degradation models in reliability analysis, 4th World Congress on Engineering Asset Management, Athens, Greece, pp. 369–384.
Grosso, J. (2015). On Model Predictive Control for Economic and Robust Operation of Generalized Flow-based Networks, Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, http://hdl.handle.net/10803/288218.
Grosso, J., Ocampo-Martinez, C. and Puig, V. (2012). A service reliability model predictive control with dynamic safety stocks and actuators health monitoring for drinking water networks, 51st IEEE Annual Conference on Decision and Control (CDC), Maui, HI, USA, pp. 4568–4573.
Grosso, J., Ocampo-Martinez, C., Puig, V. and Joseph, B. (2014). Chance-constrained model predictive control for drinking water networks, Journal of Process Control24(5): 504–516.10.1016/j.jprocont.2014.01.010
Guida, M. and Giorgio, M. (1995). Reliability analysis of accelerated life-test data from a repairable system, IEEE Transactions on Reliability44(2): 337–346.10.1109/24.387392
Guide, V. and Srivastava, R. (2000). A review of techniques for buffering against uncertainty with MRP systems, Production Planning & Control11(3): 223–233.10.1080/095372800232199
Hsu, F., Vesely, W., Grove, E., Subudhi, M. and Samanta, P. (1991). Degradation modeling: Extensions and applications, Technical report, Brookhaven National Laboratory, Ridge, NY.
Kall, P. and Mayer, J. (2005). Stochastic Linear Programming, International Series in Operations Research & Management Science, No. 80, Springer, New York, NY.
Kanet, J., Gorman, M. and Stößlein, M. (2010). Dynamic planned safety stocks in supply networks, International Journal of Production Research48(22): 6859–6880.10.1080/00207540903341887
Khelassi, A., Theilliol, D., Weber, P. and Sauter, D. (2011). A novel active fault tolerant control design with respect to actuators reliability, 50th IEEE Conference on Decision and Control and European Control Conference (CDCECC), Orlando, FL, USA, pp. 2269–2274.
Kyriakides, E. and Polycarpou, M. (2015). Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems, Studies in Computational Intelligence, Vol. 565, Springer Verlag, Berlin/Heidelberg.
Letot, C. and Dehombreux, P. (2012). Dynamic reliability degradation based models and maintenance optimization, Proc. 9th National Congress on Theoretical and Applied Mechanics (NCTAM), Brussels, Belgium, pp. 1–9.
Limon, D., Pereira, M., de la Peña, D.M., Alamo, T. and Grosso, J. (2014). Single-layer economic model predictive control for periodic operation, Journal of Process Control24(8): 1207–1224.10.1016/j.jprocont.2014.03.013
Martorell, S., Sanchez, A. and Serradell, V. (1999). Age-dependent reliability model considering effects of maintenance and working conditions, Reliability Engineering and System Safety64(1): 19–31.10.1016/S0951-8320(98)00050-7
Negenborn, R. and Hellendoorn, H. (2010). Intelligence in transportation infrastructures via model-based predictive control, in R.R. Negenborn et al. (Eds.), Intelligent Infrastructures, Springer, Dordrecht, pp. 3–24.10.1007/978-90-481-3598-1_1
Nemirovski, A. and Shapiro, A. (2006). Convex approximations of chance constrained programs, SIAM Journal on Optimization17(4): 969–996.10.1137/050622328
Ocampo-Martinez, C., Puig, V., Cembrano, G., Creus, R. and Minoves, M. (2009). Improving water management efficiency by using optimization-based control strategies: The Barcelona case study, Water Science & Technology: Water Supply9(5): 565–575.10.2166/ws.2009.524
Ortega, M. and Lin, L. (2004). Control theory applications to the production-inventory problem: A review, International Journal of Production Research42(11): 2303–2322.10.1080/00207540410001666260
Osman, H. and Demirli, K. (2012). Integrated safety stock optimization for multiple sourced stockpoints facing variable demand and lead time, International Journal of Production Economics135(1): 299–307.10.1016/j.ijpe.2011.08.004
Özer, Ö. (2003). Replenishment strategies for distribution systems under advance demand information, Management Science49(3): 255–272.10.1287/mnsc.49.3.255.12738
Papageorgiou, L. (2009). Supply chain optimisation for the process industries: Advances and opportunities, Computers & Chemical Engineering33(12): 1931–1938.10.1016/j.compchemeng.2009.06.014
Papageorgiou, M. (1984). Optimal control of generalized flow networks, in P. Thoft-Christensen (Ed.), System Modelling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 59, Springer, Berlin/Heidelberg, pp. 373–382.10.1007/BFb0008911
Pereira, E., Galvao, R. and Yoneyama, T. (2010). Model predictive control using prognosis and health monitoring of actuators, 2010 IEEE International Symposium on Industrial Electronics (ISIE), Bari, Italy, pp. 237–243.
Sampathirao, A., Grosso, J., Sopasakis, P., Ocampo-Martinez, C., Bemporad, A. and Puig, V. (2014). Water demand forecasting for the optimal operation of large-scale drinking water networks: The Barcelona case study, 19th IFAC World Congress, Cape Town, South Africa, pp. 10457–10462.
Sarimveis, H., Patrinos, P., Tarantilis, C. and Kiranoudis, C. (2008). Dynamic modeling and control of supply chain systems: A review, Computers & Operations Research35(11): 3530–3561.10.1016/j.cor.2007.01.017
Schoenmeyr, T. and Graves, S. (2009). Strategic safety stocks in supply chains with evolving forecasts, Manufacturing & Service Operations Management11(4): 657–673.10.1287/msom.1080.0245
Schwartz, J. and Rivera, D. (2010). A process control approach to tactical inventory management in production-inventory systems, International Journal of Production Economics125(1): 111–124.10.1016/j.ijpe.2010.01.011
Strijbosch, L., Syntetos, A., Boylan, J. and Janssen, E. (2011). On the interaction between forecasting and stock control: The case of non-stationary demand, International Journal of Production Economics133(1): 470–480.10.1016/j.ijpe.2009.10.032
Subramanian, K., Rawlings, J., Maravelias, C., Flores-Cerrillo, J. and Megan, L. (2013). Integration of control theory and scheduling methods for supply chain management, Computers & Chemical Engineering51(0): 4–20.10.1016/j.compchemeng.2012.06.012
Weber, P., Boussaid, B., Khelassi, A., Theilliol, D. and Aubrun, C. (2012). Reconfigurable control design with integration of a reference governor and reliability indicators, International Journal of Applied Mathematics and Computer Science22(1): 139–148, DOI: 10.2478/v10006-012-0010-0.10.2478/v10006-012-0010-0