Have a personal or library account? Click to login

References

  1. Alifanov, O.M. (1994). Inverse Heat Transfer Problems, Springer-Verlag, Berlin.10.1007/978-3-642-76436-3
  2. Alifanov, O.M., Artyukhin, E.A. and Rumyantsev, S.V. (1995). Extreme Methods for Solving Ill Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, NY.10.1615/978-1-56700-038-2.0
  3. Autrique, L., Chaussavoine, C., Leyris, J. and Ferriere, A. (2000). Optimal sensor strategy for parametric identification of a thermal system, Proceedings of IFACSYSID 2000, Santa Barbara, CA, USA.10.1016/S1474-6670(17)39879-8
  4. Autrique, L., Leyris, J. and Ramdani, N. (2002). Optimal sensor location: An experimental process for the identification of moving heat sources, Proceedings of the 15th World Congress IFAC, Barcelona, Spain.10.3182/20020721-6-ES-1901.01584
  5. Beck, J. and Arnold, K. (1977). Parameter Estimation in Engineering and Science, John Wiley and Sons, New York, NY.
  6. Chen, M., Berkowitz-Mattuck, J.B. and Glaser, P.E. (1963). The use of a kaleidoscope to obtain uniform flux over a large area in a solar or arc imaging furnace, Applied Optics2(3): 265–271.10.1364/AO.2.000265
  7. Daouas, N. and Radhouani, M. (2004). A new approach of the Kalman filter using future temperature measurements for nonlinear inverse heat conduction problem, Numerical Heat Transfer45(6): 565–585.10.1080/10407790490430598
  8. Daouas, N. and Radhouani, M. (2007). Experimental validation of an extended Kalman smoothing technique for solving nonlinear inverse heat conduction problems, Inverse Problems in Science and Engineering15(7): 765–782.10.1080/17415970701200526
  9. Egger, H., Heng, Y., Marquardt, W. and Mhamdi, A. (2009). Efficient solution of a three-dimensional inverse heat conduction problem in pool boiling, Inverse Problems25(9), Article ID: 095006.10.1088/0266-5611/25/9/095006
  10. Girault, M., Videcoq, E. and Petit, D. (2010). Estimation of time-varying heat sources through inversion of a low order model built with the modal identification method from in-situ temperature measurements, Journal of Heat and Mass Transfer53: 206–219.10.1016/j.ijheatmasstransfer.2009.09.040
  11. Hager, W. and Zhang, H. (2006). A survey of nonlinear conjugate gradient method, Pacific Journal of Optimization2(1): 35–58.
  12. Hasanov, A. and Pektas, B. (2013). Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method, Computers and Mathematics with Applications65(1): 42–57.10.1016/j.camwa.2012.10.009
  13. Huang, C. and Chen, W. (1999). A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method, International Journal of Heat and Mass Transfer43(17): 3171–3181.10.1016/S0017-9310(99)00330-0
  14. Isakov, V. (1998). Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, NY.10.1007/978-1-4899-0030-2
  15. Jarny, Y., Ozisik, M. and Bardon, J. (1991). A general optimization method using adjoint equation for solving multidimensional inverse heat conduction, International Journal of Heat and Mass Transfer34(11): 2911–2919.10.1016/0017-9310(91)90251-9
  16. Khachfe, R. and Jarny, Y. (2000). Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques, Numerical Heat Transfer B37(1): 45–67.10.1080/104077900275549
  17. Khachfe, R. and Jarny, Y. (2001). Determination of heat sources and heat transfer coefficient for two-dimensional heat flow numerical and experimental study, International Journal of Heat and Mass Transfer44(7): 1309–1322.10.1016/S0017-9310(00)00186-1
  18. Kolodziej, J., Mierzwiczak, M. and Ciakowski, M. (2010). Application of the method of fundamental solutions and radial basis functions for inverse heat source problem in case of steady-state, International Communications in Heat and Mass Transfer37(2): 121–124.10.1016/j.icheatmasstransfer.2009.09.015
  19. Lefèvre, F. and Le Niliot, C.L. (2002). Multiple transient point heat sources identification in heat diffusion: Application to experimental 2D problems, Journal of Heat and Mass Transfer45(9): 1951–1964.10.1016/S0017-9310(01)00299-X
  20. Le Niliot, C. and Lefèvre, F. (2001). A method for multiple steady line heat sources identification in diffusive system: Application to an experimental 2D problem, Journal of Heat and Mass Transfer44(7): 1425–1438.10.1016/S0017-9310(00)00184-8
  21. Le Niliot, C. and Lefèvre, F. (2004). A parameter estimation approach to solve the inverse problem of point heat sources identification, International Journal of Heat and Mass Transfer47(4): 827–841.10.1016/j.ijheatmasstransfer.2003.08.011
  22. Lormel, C., Autrique, L. and Claudet, B. (2004). Mathematical modeling of skin behavior during a laser radiation exposure, Proceedings of the 2nd European Survivability Workshop, Noordwijk, The Netherlands.
  23. Mechhoud, S., Witrant, E., Dugard, L. and Moreau, D. (2013). Combined distributed parameters and source estimation in tokamak plasma heat transport, Proceedings of the European Control Conference, Zurich, Switzerland.10.23919/ECC.2013.6669180
  24. Mierzwiczak, M. and Kolodziej, J. (2010). Application of the method of fundamental solutions and radial basis functions for inverse transient heat source problem, Computer Physics Communications181(12): 2035–2043.10.1016/j.cpc.2010.08.020
  25. Mierzwiczak, M. and Kolodziej, J. (2011). The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions, Inverse Problems in Science and Engineering19: 777–792.10.1080/17415977.2010.539685
  26. Mierzwiczak, M. and Kolodziej, J. (2012). Application of the method of fundamental solutions with the Laplace transformation for the inverse transient heat source problem, Journal of Theoretical and Applied Mechanics50(4): 1011–1023.
  27. Mohammadiun, M., Rahimi, A. and Khazaee, I. (2011). Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method, International Journal of Thermal Sciences50(12): 2443–2450.10.1016/j.ijthermalsci.2011.07.003
  28. Morozov, V. (1994). Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, NY.
  29. Museux, N., Perez, L., Autrique, L. and Agay, D. (2012). Skin burns after laser exposure: Histological analysis and predictive simulation, Burns38(5): 658–667.10.1016/j.burns.2011.12.006
  30. Park, H., Chung, O. and Lee, J. (1999). On the solution of inverse heat transfer problem using the Karhunen–Love–Galerkin method, International Journal of Heat and Mass Transfer42: 127–142.10.1016/S0017-9310(98)00136-7
  31. Perez, L., Gillet, M. and Autrique, L. (2007). Parametric identification of a multi-layered intumescent system, Proceedings of the 5th International Conference: Inverse Problems (Identification, Design and Control), Moscow, Russia.
  32. Perez, L. and Vergnaud, A. (2016). Observation strategies for mobile heating source tracking, High Temperatures, High Pressures45(1): 57–76.
  33. Powell, M. (1977). Restart procedures for the conjugate gradient method, Mathematical Programming12(1): 241–254.10.1007/BF01593790
  34. Prudhomme, M. and Nguyen, T.H. (1998). On the iterative regularization of inverse heat conduction problems by conjugate gradient method, International Communications in Heat and Mass Transfer25(7): 999–1008.10.1016/S0735-1933(98)00091-8
  35. Rakotoniaina, J., Breitenstein, O. and Langenkamp, M. (2002). Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography, Materials Science and Engineering B: Solid-State Materials for Advanced Technology91: 481–485.10.1016/S0921-5107(01)01011-X
  36. Renault, N., André, S., Maillet, D. and Cunat, D. (2008). A two-step regularized inverse solution for 2-D heat source reconstruction, Journal of Thermal Sciences47(7): 827–841.10.1016/j.ijthermalsci.2007.07.017
  37. Renault, N., André, S., Maillet, D. and Cunat, D. (2010). A spectral method for the estimation of a thermomechanical heat source from infrared temperature measurements, Journal of Thermal Sciences49(8): 1394–1406.10.1016/j.ijthermalsci.2010.03.001
  38. Rouquette, S., Autrique, L., Chaussavoine, C. and Thomas, L. (2007a). Identification of influence factors in a thermal model of a plasma-assisted chemical vapor deposition process, Inverse Problems in Science and Engineering15(5): 489–515.10.1080/17415970600838764
  39. Rouquette, S., Guo, J. and Masson, P.L. (2007b). Estimation of the parameters of a Gaussian heat source by the Levenberg–Marquardt method: Application to the electron beam welding, International Journal of Thermal Sciences46(2): 128–138.10.1016/j.ijthermalsci.2006.04.015
  40. Silva Neto, A. and Ozisik, M. (1993). Simultaneous estimation of location and timewise-varying strength of a plane heat source, Numerical Heat Transfer A24(4): 467–477.10.1080/10407789308902635
  41. Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA.10.1137/1.9780898717921
  42. Weinstock, R.P. (1952). Calculus of Variations, McGraw, New York, NY.
  43. Yi, Z. and Murio, D. (2002). Source term identification in 1D IHCP, Journal of Computers and Mathematics with Applications47(10/11): 1921–1933.10.1016/j.camwa.2002.11.025
  44. Zhou, J., Zhang, Y., Chen, J. and Feng, Z. (2010). Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method, International Journal of Heat and Mass Transfer53: 2643–2654.10.1016/j.ijheatmasstransfer.2010.02.048
DOI: https://doi.org/10.1515/amcs-2016-0043 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 623 - 640
Submitted on: Feb 11, 2015
Accepted on: Apr 18, 2016
Published on: Sep 29, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Sara Beddiaf, Laurent Autrique, Laetitia Perez, Jean-Claude Jolly, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.