Adjrad, M. and Belouchrani, A. (2007). Estimation of multicomponent polynomial-phase signals impinging on a multisensor array using state-space modeling, IEEE Transactions on Signal Processing55(1): 32–45.10.1109/TSP.2006.882055
Babuska, R., Verbruggen, H. (2003). Flexible neuro-fuzzy methods for nonlinear system identification, Annual Reviews in Control27(1): 73–85.10.1016/S1367-5788(03)00009-9
Bagarinao, E., Matsuo, K., Nakai, T. and Sato, S. (2003). Estimation of general linear model coefficients for real-time application, NeuroImage19(2): 422–429.10.1016/S1053-8119(03)00081-8
Banerjee, A., Arkun, Y., Ogunnaike, B. and Pearson, R. (1997). Estimation of nonlinear systems using linear multiple models, AIChE Journal43(5): 1204–1226.10.1002/aic.690430511
Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science17(2): 233–248, DOI: 10.2478/v10006-007-0021-4.10.2478/v10006-007-0021-4
Casillas, J., Cordón, O., Herrera, F. and Magdalena, L. (2003). Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: An overview, in J. Casillas et al. (Eds.), Interpretability Issues in Fuzzy Modeling, Springer, Berlin/Heidelberg, pp. 3–22.10.1007/978-3-540-37057-4_1
Cordón, O. (2011). A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, International Journal of Approximate Reasoning52(6): 894–913.10.1016/j.ijar.2011.03.004
Cpałka, K. (2009a). A new method for design and reduction of neuro-fuzzy classification systems, IEEE Transactions on Neural Networks20(4): 701–714.10.1109/TNN.2009.201242519273042
Cpałka, K. (2009b). On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification, Nonlinear Analysis A: Theory, Methods and Applications71(12): 1659–1672.10.1016/j.na.2009.02.028
Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neuro-computing135: 203–217.10.1016/j.neucom.2013.12.031
Cpałka, K., Rebrova, O., Nowicki, R. and Rutkowski, L. (2013). On design of flexible neuro-fuzzy systems for nonlinear modelling, International Journal of General Systems42(6): 706–720.10.1080/03081079.2013.798912
Czekalski, P. (2006). Evolution-fuzzy rule based system with parameterized consequences, International Journal of Applied Mathematics and Computer Science16(3): 373–385.
DeHaan, D. and Guay, M. (2006). A new real-time perspective on non-linear model predictive control, Journal of Process Control16(6): 615–624.10.1016/j.jprocont.2005.10.002
Di Nuovo, A. and Ascia, G. (2013). A fuzzy system index to preserve interpretability in deep tuning of fuzzy rule based classifiers, Journal of Intelligent and Fuzzy Systems25(2): 493–504.10.3233/IFS-120660
Fei, X., Lu, C.-C. and Liu, K. (2011). A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction, Transportation Research C: Emerging Technologies19(6): 1306–1318.10.1016/j.trc.2010.10.005
Fogel, D.B. and Atmar, J.W. (1990). Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems, Biological Cybernetics63(2): 111–114.10.1007/BF00203032
Gabryel, M. and Rutkowski, L. (2006). Evolutionary learning of Mamdani-type neuro-fuzzy systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 4029, Springer, Berlin/Heidelberg, pp. 354–359.10.1007/11785231_38
Gacto, M., Alcala, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences181(20): 4340–4360.10.1016/j.ins.2011.02.021
Grabowski, P. and Callier, F.M. (2001). Circle criterion and boundary control systems in factor form: Input-output approach, Applied Mathematics and Computer Science11(6): 1387–1403.
Háber, R. and Keviczky, L. (1999). Nonlinear System Identification—Input-Output Modeling Approach, Vol. 1: Nonlinear System Parameter Identification, Springer Netherlands, Dordrecht.10.1007/978-94-011-4481-0
Homaifar, A. and McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Transactions on Fuzzy Systems3(2): 129–139.10.1109/91.388168
Huijberts, H., Nijmeijer, H. and Willems, R. (2000). System identification in communication with chaotic systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications47(6): 800–808.10.1109/81.852932
Ishibashi, R. and Lucio Nascimento, Jr., C. (2013). GFRBS-PHM: A genetic fuzzy rule-based system for PHM with improved interpretability, IEEE Conference on Prognostics and Health Management, 2013, Gaithersburg, MD, USA, pp. 1–7.
Ishibuchi, H. and Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets and Systems141(1): 59–88.10.1016/S0165-0114(03)00114-3
Johansen, T.A., Shorten, R. and Murray-Smith, R. (2000). On the interpretation and identification of dynamic Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems8(3): 297–313.10.1109/91.855918
Johansson, U., Sönströd, C., Norinder, U. and Boström, H. (2011). Trade-off between accuracy and interpretability for predictive in silico modeling, Future Medicinal Chemistry3(6): 647–663.10.4155/fmc.11.2321554073
Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics43(6): 1781–1795.10.1109/TSMCB.2012.223025324273147
Kim, M.-S., Kim, C.-H. and Lee, J.-J. (2006). Evolving compact and interpretable Takagi–Sugeno fuzzy models with a new encoding scheme, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(5): 1006–1023.10.1109/TSMCB.2006.872265
Kluska, J. (2015). Selected applications of P1-TS fuzzy rule-based systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 9119, Springer, Berlin/Heidelberg, pp. 195–206.10.1007/978-3-319-19324-3_18
Kristensen, N.R., Madsen, H. and Jørgensen, S.B. (2004). A method for systematic improvement of stochastic grey-box models, Computers & Chemical Engineering28(8): 1431–1449.10.1016/j.compchemeng.2003.10.003
Li, C. and Chiang, T.-W. (2012). Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence, International Journal of Applied Mathematics and Computer Science22(4): 787–800, DOI: 10.2478/v10006-012-0058-x.10.2478/v10006-012-0058-x
Łęski, J. (2003). A fuzzy if-then rule-based nonlinear classifier, International Journal of Applied Mathematics and Computer Science13(2): 215–223.10.1016/S0165-0114(02)00372-X
Lughofer, E. (2013). On-line assurance of interpretability criteria in evolving fuzzy systems—achievements, new concepts and open issues, Information Sciences251: 22–46.10.1016/j.ins.2013.07.002
Malchiodi, D. and Pedrycz, W. (2013). Learning membership functions for fuzzy sets through modified support vector clustering, in F. Masulli et al. (Eds.), Fuzzy Logic and Applications, Springer, Cham, pp. 52–59.10.1007/978-3-319-03200-9_6
Medasani, S., Kim, J. and Krishnapuram, R. (1998). An overview of membership function generation techniques for pattern recognition, International Journal of Approximate Reasoning19(3): 391–417.10.1016/S0888-613X(98)10017-8
Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information, The Psychological Review63: 81–97.10.1037/h0043158
Patton, R.J., Korbicz, J., Witczak, M. and Uppal, F. (2005). Combined computational intelligence and analytical methods in fault diagnosis, IEE Control Engineering Series70: 349.10.1049/PBCE070E_ch11
Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematics and Computer Science21(1): 137–147, DOI: 10.2478/v10006-011-0010-5.10.2478/v10006-011-0010-5
Przybył, A. and Jelonkiewicz, J. (2003). Genetic algorithm for observer parameters tuning in sensorless induction motor drive, Proceedings of the 6th International Conference on Neural Networks and Soft Computing, Zakopane Poland, pp. 376–381.
Puig, V., Witczak, M., Nejjari, F., Quevedo, J. and Korbicz, J. (2007). A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test, Engineering Applications of Artificial Intelligence20(7): 886–897.10.1016/j.engappai.2006.12.005
Quah, K.H. and Quek, C., (2006). FITSK: Online local learning with generic fuzzy input Takagi–Sugeno–Kang fuzzy framework for nonlinear system estimation, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(1): 166-178.10.1109/TSMCB.2005.85671516468575
Rutkowski, L. and Cpałka, K. (2005). Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems, IEEE Transactions on Fuzzy Systems13(1): 140–151.10.1109/TFUZZ.2004.836069
Salapa, K., Trawińska, A., Roterman, I. and Tadeusiewicz, R. (2014). Speaker identification based on artificial neural networks. Case study: The Polish vowel (a pilot study), Bio-Algorithms and Med-Systems10(2): 91–99.
Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems8(5): 509–522.10.1109/91.873575
Shill, P., Akhand, M. and Murase, K. (2011). Simultaneous design of membership functions and rule sets for type-2 fuzzy controllers using genetic algorithms, 14th International Conference on Computer and Information Technology, Dhaka, Bangladesh, pp. 554–559.
Shukla, P. and Tripathi, S. (2013). Interpretability issues in evolutionary multi-objective fuzzy knowledge base systems, 7th International Conference on Bio-Inspired Computing: Theories and Applications, Madhya Pradesh, India, pp. 473–484.
Starczewski, J.T., Bartczuk, Ł., Dziwiński, P. and Marvuglia, A. (2010). Learning methods for type-2 FLS based on FCM, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 224–231.10.1007/978-3-642-13208-7_29
Tadeusiewicz, R. (2010). Using neural networks for simplified discovery of some psychological phenomena, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 104–123.10.1007/978-3-642-13232-2_14
Tadeusiewicz, R. and Figura, I. (2011). Phenomenon of tolerance to damage in artificial neural networks, Computer Methods in Materials Science11(4): 501–513.
Tan, Y. (2004). Time-varying time-delay estimation for nonlinear systems using neural networks, International Journal of Applied Mathematics and Computer Science14(1): 63–68.
Wilamowski, B.M. (2005). Methods of computational intelligence for nonlinear control systems, ICCAE 2005 International Conference on Control, Automation and System, Gyeonggi-Do, Korea, pp. P1–P8.
Witkowska, A. andŚmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.10.2478/v10006-012-0073-y
Wu, C.-J. and Liu, G.-Y. (2000). A genetic approach for simultaneous design of membership functions and fuzzy control rules, Journal of Intelligent and Robotic Systems28(3): 195–211.10.1023/A:1008186427312
Xie, Y., Guo, B., Xu, L., Li, J. and Stoica, P. (2006). Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Transactions on Biomedical Engineering53(8): 1647.10.1109/TBME.2006.87805816916099
Zhou, S.-M., Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling, Fuzzy Sets and Systems159(23): 3091–3131.10.1016/j.fss.2008.05.016