Have a personal or library account? Click to login

A new approach to nonlinear modelling of dynamic systems based on fuzzy rules

Open Access
|Sep 2016

References

  1. Adjrad, M. and Belouchrani, A. (2007). Estimation of multicomponent polynomial-phase signals impinging on a multisensor array using state-space modeling, IEEE Transactions on Signal Processing55(1): 32–45.10.1109/TSP.2006.882055
  2. Angelov, P.P., Filev, D.P. (2004). Flexible models with evolving structure, International Journal of Intelligent Systems19(4): 327–340.10.1002/int.10166
  3. Babuska, R., Verbruggen, H. (2003). Flexible neuro-fuzzy methods for nonlinear system identification, Annual Reviews in Control27(1): 73–85.10.1016/S1367-5788(03)00009-9
  4. Bagarinao, E., Matsuo, K., Nakai, T. and Sato, S. (2003). Estimation of general linear model coefficients for real-time application, NeuroImage19(2): 422–429.10.1016/S1053-8119(03)00081-8
  5. Banerjee, A., Arkun, Y., Ogunnaike, B. and Pearson, R. (1997). Estimation of nonlinear systems using linear multiple models, AIChE Journal43(5): 1204–1226.10.1002/aic.690430511
  6. Bohlin, T.P. (2006). Practical Grey-Box Process Identification: Theory and Applications, Springer, London.
  7. Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science17(2): 233–248, DOI: 10.2478/v10006-007-0021-4.10.2478/v10006-007-0021-4
  8. Casillas, J., Cordón, O., Herrera, F. and Magdalena, L. (2003). Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: An overview, in J. Casillas et al. (Eds.), Interpretability Issues in Fuzzy Modeling, Springer, Berlin/Heidelberg, pp. 3–22.10.1007/978-3-540-37057-4_1
  9. Caughey, T.K. (1963). Equivalent linearization techniques, Journal of the Acoustical Society of America35(11): 1706–1711.10.1121/1.1918794
  10. Cordón, O. (2011). A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, International Journal of Approximate Reasoning52(6): 894–913.10.1016/j.ijar.2011.03.004
  11. Cordón, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001). Genetic Fuzzy Systems, World Scientific Publishing Company, Singapore.10.1142/4177
  12. Cpałka, K. (2009a). A new method for design and reduction of neuro-fuzzy classification systems, IEEE Transactions on Neural Networks20(4): 701–714.10.1109/TNN.2009.201242519273042
  13. Cpałka, K. (2009b). On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification, Nonlinear Analysis A: Theory, Methods and Applications71(12): 1659–1672.10.1016/j.na.2009.02.028
  14. Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neuro-computing135: 203–217.10.1016/j.neucom.2013.12.031
  15. Cpałka, K., Rebrova, O., Nowicki, R. and Rutkowski, L. (2013). On design of flexible neuro-fuzzy systems for nonlinear modelling, International Journal of General Systems42(6): 706–720.10.1080/03081079.2013.798912
  16. Czekalski, P. (2006). Evolution-fuzzy rule based system with parameterized consequences, International Journal of Applied Mathematics and Computer Science16(3): 373–385.
  17. DeHaan, D. and Guay, M. (2006). A new real-time perspective on non-linear model predictive control, Journal of Process Control16(6): 615–624.10.1016/j.jprocont.2005.10.002
  18. Di Nuovo, A. and Ascia, G. (2013). A fuzzy system index to preserve interpretability in deep tuning of fuzzy rule based classifiers, Journal of Intelligent and Fuzzy Systems25(2): 493–504.10.3233/IFS-120660
  19. Eiben, A.E. and Smith, J. (2008). Introduction to Evolutionary Computing, Springer, Berlin/Heidelberg.
  20. Fei, X., Lu, C.-C. and Liu, K. (2011). A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction, Transportation Research C: Emerging Technologies19(6): 1306–1318.10.1016/j.trc.2010.10.005
  21. Fogel, D.B. (2006). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, Vol. 1, John Wiley & Sons, Hoboken, NJ.
  22. Fogel, D.B. and Atmar, J.W. (1990). Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems, Biological Cybernetics63(2): 111–114.10.1007/BF00203032
  23. Forst, W. and Hoffmann, D. (2010). Optimization Theory and Practice, Springer, New York, NY.10.1007/978-0-387-78977-4
  24. Gabryel, M. and Rutkowski, L. (2006). Evolutionary learning of Mamdani-type neuro-fuzzy systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 4029, Springer, Berlin/Heidelberg, pp. 354–359.10.1007/11785231_38
  25. Gacto, M., Alcala, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences181(20): 4340–4360.10.1016/j.ins.2011.02.021
  26. Grabowski, P. and Callier, F.M. (2001). Circle criterion and boundary control systems in factor form: Input-output approach, Applied Mathematics and Computer Science11(6): 1387–1403.
  27. Háber, R. and Keviczky, L. (1999). Nonlinear System Identification—Input-Output Modeling Approach, Vol. 1: Nonlinear System Parameter Identification, Springer Netherlands, Dordrecht.10.1007/978-94-011-4481-0
  28. Homaifar, A. and McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Transactions on Fuzzy Systems3(2): 129–139.10.1109/91.388168
  29. Horzyk, A. and Tadeusiewicz, R. (2004). Self-optimizing neural networks, Advances in Neural Networks, Springer, Berlin/Heidelberg, pp. 150–155.
  30. Huijberts, H., Nijmeijer, H. and Willems, R. (2000). System identification in communication with chaotic systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications47(6): 800–808.10.1109/81.852932
  31. Ikonen, E. and Najim, K. (2001). Advanced Process Identification and Control, Vol. 9, CRC Press, New York, NY.10.1201/9781482294699
  32. Ishibashi, R. and Lucio Nascimento, Jr., C. (2013). GFRBS-PHM: A genetic fuzzy rule-based system for PHM with improved interpretability, IEEE Conference on Prognostics and Health Management, 2013, Gaithersburg, MD, USA, pp. 1–7.
  33. Ishibuchi, H. and Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets and Systems141(1): 59–88.10.1016/S0165-0114(03)00114-3
  34. Jang, I.-S. R. and Sun, C.-T. (1995). Neuro-fuzzy modeling and control, Proceedings of the IEEE83(3): 378–406.10.1109/5.364486
  35. Johansen, T.A., Shorten, R. and Murray-Smith, R. (2000). On the interpretation and identification of dynamic Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems8(3): 297–313.10.1109/91.855918
  36. Johansson, U., Sönströd, C., Norinder, U. and Boström, H. (2011). Trade-off between accuracy and interpretability for predictive in silico modeling, Future Medicinal Chemistry3(6): 647–663.10.4155/fmc.11.2321554073
  37. Jordan, A. (2006). Linearization of non-linear state equation, Bulletin of the Polish Academy of Sciences: Technical Sciences54(1): 63–73.
  38. Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics43(6): 1781–1795.10.1109/TSMCB.2012.223025324273147
  39. Kim, M.-S., Kim, C.-H. and Lee, J.-J. (2006). Evolving compact and interpretable Takagi–Sugeno fuzzy models with a new encoding scheme, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(5): 1006–1023.10.1109/TSMCB.2006.872265
  40. Kluska, J. (2009). Analytical Methods in Fuzzy Modeling and Control, Springer, Berlin/Heidelberg.10.1007/978-3-540-89927-3
  41. Kluska, J. (2015). Selected applications of P1-TS fuzzy rule-based systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 9119, Springer, Berlin/Heidelberg, pp. 195–206.10.1007/978-3-319-19324-3_18
  42. Kristensen, N.R., Madsen, H. and Jørgensen, S.B. (2004). A method for systematic improvement of stochastic grey-box models, Computers & Chemical Engineering28(8): 1431–1449.10.1016/j.compchemeng.2003.10.003
  43. Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook of Monte Carlo Methods, Vol. 706, John Wiley & Sons, Hoboken, NJ.10.1002/9781118014967
  44. Li, C. and Chiang, T.-W. (2012). Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence, International Journal of Applied Mathematics and Computer Science22(4): 787–800, DOI: 10.2478/v10006-012-0058-x.10.2478/v10006-012-0058-x
  45. Ljung, L. (2010). Approaches to identification of nonlinear systems, 9th Chinese Control Conference, Beijing, China, pp. 1–5.
  46. Łęski, J. (2003). A fuzzy if-then rule-based nonlinear classifier, International Journal of Applied Mathematics and Computer Science13(2): 215–223.10.1016/S0165-0114(02)00372-X
  47. Lughofer, E. (2013). On-line assurance of interpretability criteria in evolving fuzzy systems—achievements, new concepts and open issues, Information Sciences251: 22–46.10.1016/j.ins.2013.07.002
  48. Malchiodi, D. and Pedrycz, W. (2013). Learning membership functions for fuzzy sets through modified support vector clustering, in F. Masulli et al. (Eds.), Fuzzy Logic and Applications, Springer, Cham, pp. 52–59.10.1007/978-3-319-03200-9_6
  49. Medasani, S., Kim, J. and Krishnapuram, R. (1998). An overview of membership function generation techniques for pattern recognition, International Journal of Approximate Reasoning19(3): 391–417.10.1016/S0888-613X(98)10017-8
  50. Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information, The Psychological Review63: 81–97.10.1037/h0043158
  51. Mrugalski, M. (2014). Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis, Studies in Computational Intelligence, Vol. 510, Springer-Verlag, Berlin/Heidelberg.
  52. Murray-Smith, R. and Johansen, T. (1997). Multiple Model Approaches to Nonlinear Modelling and Control, CRC Press, Boca Raton, FL.
  53. Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, Springer, Berlin/Heidelberg.
  54. Ogata, K. (2004). System Dynamics, Pearson/Prentice Hall, Upper Saddle River, NJ.
  55. Patton, R.J., Korbicz, J., Witczak, M. and Uppal, F. (2005). Combined computational intelligence and analytical methods in fault diagnosis, IEE Control Engineering Series70: 349.10.1049/PBCE070E_ch11
  56. Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematics and Computer Science21(1): 137–147, DOI: 10.2478/v10006-011-0010-5.10.2478/v10006-011-0010-5
  57. Przybył, A. and Jelonkiewicz, J. (2003). Genetic algorithm for observer parameters tuning in sensorless induction motor drive, Proceedings of the 6th International Conference on Neural Networks and Soft Computing, Zakopane Poland, pp. 376–381.
  58. Puig, V., Witczak, M., Nejjari, F., Quevedo, J. and Korbicz, J. (2007). A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test, Engineering Applications of Artificial Intelligence20(7): 886–897.10.1016/j.engappai.2006.12.005
  59. Quah, K.H. and Quek, C., (2006). FITSK: Online local learning with generic fuzzy input Takagi–Sugeno–Kang fuzzy framework for nonlinear system estimation, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(1): 166-178.10.1109/TSMCB.2005.85671516468575
  60. Roffel, B. and Betlem, B.H. (2004). Advanced Practical Process Control, Springer, Berlin/Heidelberg.10.1007/978-3-642-18258-7
  61. Rüping, S. (2006). Learning Interpretable Models, Ph.D. thesis, Technical University of Dortmund, Dortmund.
  62. Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques, Springer, Berlin/Heidelberg.
  63. Rutkowski, L. and Cpałka, K. (2005). Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems, IEEE Transactions on Fuzzy Systems13(1): 140–151.10.1109/TFUZZ.2004.836069
  64. Salapa, K., Trawińska, A., Roterman, I. and Tadeusiewicz, R. (2014). Speaker identification based on artificial neural networks. Case study: The Polish vowel (a pilot study), Bio-Algorithms and Med-Systems10(2): 91–99.
  65. Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems8(5): 509–522.10.1109/91.873575
  66. Schröder, D. (Ed.) (2000). Intelligent Observer and Control Design for Nonlinear Systems, Springer, Berlin/Heidelberg.10.1007/978-3-662-04117-8
  67. Shill, P., Akhand, M. and Murase, K. (2011). Simultaneous design of membership functions and rule sets for type-2 fuzzy controllers using genetic algorithms, 14th International Conference on Computer and Information Technology, Dhaka, Bangladesh, pp. 554–559.
  68. Shukla, P. and Tripathi, S. (2013). Interpretability issues in evolutionary multi-objective fuzzy knowledge base systems, 7th International Conference on Bio-Inspired Computing: Theories and Applications, Madhya Pradesh, India, pp. 473–484.
  69. Sivanandam, S. and Deepa, S. (2008). Genetic Algorithm Optimization Problems, Springer, Berlin/Heidelberg.
  70. Starczewski, J.T., Bartczuk, Ł., Dziwiński, P. and Marvuglia, A. (2010). Learning methods for type-2 FLS based on FCM, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 224–231.10.1007/978-3-642-13208-7_29
  71. Tadeusiewicz, R. (2010). Using neural networks for simplified discovery of some psychological phenomena, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 104–123.10.1007/978-3-642-13232-2_14
  72. Tadeusiewicz, R., Chaki, R. and Chaki, N. (2014). Exploring Neural Networks with C#, CRC Press, Boca Raton, FL.
  73. Tadeusiewicz, R. and Figura, I. (2011). Phenomenon of tolerance to damage in artificial neural networks, Computer Methods in Materials Science11(4): 501–513.
  74. Tan, Y. (2004). Time-varying time-delay estimation for nonlinear systems using neural networks, International Journal of Applied Mathematics and Computer Science14(1): 63–68.
  75. Wang, H., Kwong, S., Jin, Y., Wei, W. and Man, K.-F. (2005). Agent-based evolutionary approach for interpretable rule-based knowledge extraction, IEEE Transactions on Systems, Man, and Cybernetics C: Applications and Reviews35(2): 143–155.10.1109/TSMCC.2004.841910
  76. Wang, H., Kwong, S., Jin, Y., Wei, W. and Man, K.-F. (2005). Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets and Systems149(1): 149–186.10.1016/j.fss.2004.07.013
  77. Wilamowski, B.M. (2005). Methods of computational intelligence for nonlinear control systems, ICCAE 2005 International Conference on Control, Automation and System, Gyeonggi-Do, Korea, pp. P1–P8.
  78. Witkowska, A. andŚmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.10.2478/v10006-012-0073-y
  79. Wu, C.-J. and Liu, G.-Y. (2000). A genetic approach for simultaneous design of membership functions and fuzzy control rules, Journal of Intelligent and Robotic Systems28(3): 195–211.10.1023/A:1008186427312
  80. Xie, Y., Guo, B., Xu, L., Li, J. and Stoica, P. (2006). Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Transactions on Biomedical Engineering53(8): 1647.10.1109/TBME.2006.87805816916099
  81. Zhou, S.-M., Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling, Fuzzy Sets and Systems159(23): 3091–3131.10.1016/j.fss.2008.05.016
DOI: https://doi.org/10.1515/amcs-2016-0042 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 603 - 621
Submitted on: Jun 27, 2015
Accepted on: Jun 15, 2016
Published on: Sep 29, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Łukasz Bartczuk, Andrzej Przybył, Krzysztof Cpałka, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.