Byrski, J. (2014). Finite Memory Algorithms for Signal Processing in the Diagnosis of Processes, Ph.D., thesis, AGH University of Science and Technology, Kraków.
Byrski, J. and Byrski, W. (2012a). Design and implementation of a new algorithm for fast diagnosis of step changes in parameters of continuous systems, 8th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, SAFEPROCESS’12, Mexico City, Mexico, pp. 695–700.10.3182/20120829-3-MX-2028.00276
Byrski, W. (2003). The survey for the exact and optimal state observers in Hilbert spaces, 7th European Control Conference, ECC03, Cambridge, UK.10.23919/ECC.2003.7086592
Byrski, W. and Byrski, J. (2012b). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, International Journal of Applied Mathematics and Computer Science22(2): 379–388, DOI: 10.2478/v10006-012-0028-3.10.2478/v10006-012-0028-3
Byrski, W. and Fuksa, S. (1996). Linear adaptive controller for continuous system with convolution filter, Proceedings of the IFAC 13th Triennial World Congress, San Francisco, CA, USA, pp. 379–384.
Carlsson, B., Ahlen, A. and Sternad, M. (1991). Optimal differentiation based on stochastic signal models, IEEE Transactions on Signal Processing39(2): 341–353.10.1109/78.80817
Chen, J. and Zhang, H. (1991). Robust detection of faulty actuators via input observers, International Journal of System Science22(10): 1829–1839.10.1080/00207729108910753
Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results, Automatica26(3): 459–474.10.1016/0005-1098(90)90018-D
Fuksa, S. and Byrski, W. (1984). General approach to linear optimal estimator of finite number of parameters, IEEE Transactions on Automatic Control29(5): 470–472.10.1109/TAC.1984.1103546
Jouffroy, J. and Reger, J. (2015). Finite-time simultaneous parameter and state estimation using modulating functions, IEEE Conference on Control Applications (CCA), Sydney, Australia, pp. 394–399.
Lai, T.L. and Shan, J.Z. (1999). Efficient recursive algorithms for detection of abrupt changes in signals and control systems, IEEE Transactions on Automatic Control44(5): 952–966.10.1109/9.763211
Lincon, S.A., Sivakumar, D. and Prakash, J. (2007). State and fault parameter estimation applied to three-tank bench mark relying on augmented state Kalman filter, ICGST Journal of Automatic Control and System Engineering7(1): 33–41.
Medvedev, A. (1996). Fault detection and isolation by functional continuous deadbeat observers, International Journal of Control64(3): 425–439.10.1080/00207179608921637
Nuninger, W., Kratz, F. and Ragot, J. (1998). Finite memory generalised state observer for failure detection in dynamic systems, IEEE Conference on Decision & Control, Tampa, FL, USA, pp. 581–585.
Orani, N., Pisano, A. and Usai, E. (2010). Fault diagnosis for the vertical three-tank system via high-order sliding-mode observation, Journal of the Franklin Institute347(6): 923–939.10.1016/j.jfranklin.2009.11.010
Preisig, H.A. and Rippin, D.W.T. (1993). Theory and application of the modulating function method, Computers and Chemical Engineering17(1): 1–16.10.1016/0098-1354(93)80001-4
Qu, R. (1996). A new approach to numerical differentiation and integration, Mathematical and Computer Modelling24(10): 55–68.10.1016/S0895-7177(96)00164-1
Reger, J. and Jouffroy, J. (2009). On algebraic time-derivative estimation and deadbeat state reconstruction, IEEE Conference on Decision and Control, Shanghai, China, pp. 1740–1745.
Rolink, M., Boukhobza, T. and Sauter, D. (2006). High order sliding mode observer for fault actuator estimation and its application to the three tanks benchmark, German-French Institute for Automation and Robotics, http://hal.archives-ouvertes.fr/hal-00121029/en/.
Sainz, M., Armengol, J. and Vehi, J. (2002). Fault detection and isolation of the three-tank system using the modal interval analysis, Journal of Process Control12(2): 325–338.10.1016/S0959-1524(01)00033-6
Simani, S., Fantuzzi, C. and Patton, R. (2003). Model Based Fault Diagnosis in Dynamic Systems Using Identification Techniques, Springer, London.10.1007/978-1-4471-3829-7
Smith, M.S., Moes, T.R. and Morelli, E.A. (2003). Real-time stability and control derivative extraction from F-15 flight data, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Austin, TX, USA, p. 5701.
Theilliol, D., Noura, H. and Ponsart, J.C. (2002). Fault diagnosis and accommodation of a three-tank system based on analytical redundancy, ISA Transactions41(3): 365–382.10.1016/S0019-0578(07)60094-9
Ukil, A. and Zivanovic, R. (2007). Application of abrupt change detection in power systems disturbance analysis and relay performance monitoring, IEEE Transactions on Power Delivery22(1): 365–382.10.1109/TPWRD.2006.887096
Vainio, O., Renfors, M. and Saramaki, T. (1997). Recursive implementation of FIR differentiators with optimum noise attenuation, IEEE Transactions on Instrumentation and Measurement46(5): 1202–1207.10.1109/19.676743
Wang, W., Bo, Y., Zhou, K. and Ren, Z. (2008). Fault detection and isolation for nonlinear systems with full state information, 17th IFAC World Congress, Seoul, Korea, pp. 901–909.