Have a personal or library account? Click to login

References

  1. Ablowitz, M. and Segur, H. (1979). On the evolution of packets of water waves, Journal of Fluid Mechanics92(4): 691–715.10.1017/S0022112079000835
  2. Ali, A. and Kalisch, H. (2014). On the formulation of mass, momentum and energy conservation in the KdV equation, Acta Applicandae Mathematicae133(1): 113–131.10.1007/s10440-013-9861-0
  3. Bona, J., Chen, H., Karakashian, O. and Xing, Y. (2013). Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation, Mathematics of Computation82(283): 1401–1432.10.1090/S0025-5718-2013-02661-0
  4. Burde, G. and Sergyeyev, A. (2013). Ordering of two small parameters in the shallow water wave problem, Journal of Physics A46(7): 075501.10.1088/1751-8113/46/7/075501
  5. Cui, Y. and Ma, D. (2007). Numerical method satisfying the first two conservation laws for the Korteweg–de Vries equation, Journal of Computational Physics227(1): 376–399.10.1016/j.jcp.2007.07.031
  6. Debussche, A. and Printems, I. (1999). Numerical simulation of the stochastic Korteweg–de Vries equation, Physica D134(2): 200–226.10.1016/S0167-2789(99)00072-X
  7. Dingemans, M. (1997). Water Wave Propagation over Uneven Bottoms, World Scientific, Singapore.10.1142/1241-part1
  8. Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge University Press, Cambridge.10.1017/CBO9781139172059
  9. Fornberg, B. and Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena, Philosophical Transactions A of the Royal Society289(1361): 373–404.10.1098/rsta.1978.0064
  10. Goda, K. (1975). On instability of some finite difference schemes for the Korteweg–de Vries equation, Journal of the Physical Society of Japan39(1): 229–236.10.1143/JPSJ.39.229
  11. Green, A.E. and Naghdi, P.M. (1976). A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics78(2): 237–246.10.1017/S0022112076002425
  12. Grimshaw, R. (1970). The solitary wave in water of variable depth, Journal of Fluid Mechanics42(3): 639–656.10.1017/S0022112070001520
  13. Grimshaw, R.H.J. and Smyth, N.F. (1986). Resonant flow of a stratified fluid over topography, Journal of Fluid Mechanics169: 429–464.10.1017/S002211208600071X
  14. Grimshaw, R., Pelinovsky, E. and Talipova, T. (2008). Fission of a weakly nonlinear interfacial solitary wave at a step, Geophysical and Astrophysical Fluid Dynamics102(2): 179–194.10.1080/03091920701640115
  15. Infeld, E. and Rowlands, G. (2000). Nonlinear Waves, Soli-tons and Chaos, 2nd Edition, Cambridge University Press, Cambridge.10.1017/CBO9781139171281
  16. Kamchatnov, A.M., Kuo, Y.H., Lin, T.C., Horng, T.L., Gou, S.C., Clift, R., El, G.A. and Grimshaw, R.H.J. (2012). Undular bore theory for the Gardner equation, Physical Review E86: 036605.10.1103/PhysRevE.86.03660523031043
  17. Karczewska, A., Rozmej, P. and Infeld, E. (2014a). Shallow-water soliton dynamics beyond the Korteweg–de Vries equation, Physical Review E90: 012907.10.1103/PhysRevE.90.01290725122360
  18. Karczewska, A., Rozmej, P. and Rutkowski, L. (2014b). A new nonlinear equation in the shallow water wave problem, Physica Scripta89(5): 054026.10.1088/0031-8949/89/5/054026
  19. Karczewska, A., Rozmej, P. and Infeld, E. (2015). Energy invariant for shallow water waves and the Korteweg–de Vries equation: Doubts about the invariance of energy, Physical Review E92: 053202.10.1103/PhysRevE.92.05320226651809
  20. Karczewska, A., Szczeciński, M., Rozmej, P., and Boguniewicz, B. (2016). Finite element method for stochastic extended KdV equations, Computational Methods in Science and Technology22(1): 19–29.10.12921/cmst.2016.22.01.002
  21. Kim, J.W., Bai, K.J., Ertekin, R.C. and Webster, W.C. (2001). A derivation of the Green–Naghdi equations for irrotational flows, Journal of Engineering Mathematics40: 17–42.10.1023/A:1017541206391
  22. Marchant, T. and Smyth, N. (1990). The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography, Journal of Fluid Mechanics221(1): 263–288.10.1017/S0022112090003561
  23. Marchant, T. and Smyth, N. (1996). Soliton interaction for the extended Korteweg–de Vries equation, IMA Journal of Applied Mathematics56: 157–176.10.1093/imamat/56.2.157
  24. Mei, C. and Le Méhauté, B. (1966). Note on the equations of long waves over an uneven bottom, Journal of Geophysical Research71(2): 393–400.10.1029/JZ071i002p00393
  25. Miura, R.M., Gardner, C.S. and Kruskal, M.D. (1968). Korteweg–de Vries equation and generalizations, II: Existence of conservation laws and constants of motion, Journal of Mathematical Physics9(8): 1204–1209.10.1063/1.1664701
  26. Nadiga, B., Margolin, L. and Smolarkiewicz, P. (1996). Different approximations of shallow fluid flow over an obstacle, Physics of Fluids8(8): 2066–2077.10.1063/1.869009
  27. Nakoulima, O., Zahibo, N. Pelinovsky, E., Talipova, T. and Kurkin, A. (2005). Solitary wave dynamics in shallow water over periodic topography, Chaos15(3): 037107.10.1063/1.1984492
  28. Pelinovsky, E., Choi, B., Talipova, T., Woo, S. and Kim, D. (2010). Solitary wave transformation on the underwater step: Theory and numerical experiments, Applied Mathematics and Computation217(4): 1704–1718.10.1016/j.amc.2009.10.029
  29. Pudjaprasetya, S.R. and van Greoesen, E. (1996). Uni-directional waves over slowly varying bottom, II: Quasi-homogeneous approximation of distorting waves, Wave Motion23(1): 23–38.10.1016/0165-2125(95)00038-0
  30. Remoissenet, M. (1999). Waves Called Solitons: Concepts and Experiments, Springer, Berlin.10.1007/978-3-662-03790-4
  31. Skogstad, J. and Kalisch, H. (2009). A boundary value problem for the KdV equation: Comparison of finite difference and Chebyshev methods, Mathematics and Computers in Simulation80(1): 151–163.10.1016/j.matcom.2009.06.009
  32. Smyth, N.F. (1987). Modulation theory solution for resonant flow over topography, Proceedings of the Royal Society of London A409(1836): 79–97.10.1098/rspa.1987.0007
  33. Taha, T.R. and Ablowitz, M.J. (1984). Analytical and numerical aspects of certain nonlinear evolution equations III: Numerical, Korteweg–de Vries equation, Journal of Computational Physics55(2): 231–253.10.1016/0021-9991(84)90004-4
  34. van Greoesen, E. and Pudjaprasetya, S.R. (1993). Uni-directional waves over slowly varying bottom, I: Derivation of a KdV-type of equation, Wave Motion18(4): 345–370.10.1016/0165-2125(93)90065-N
  35. Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York, NY.
  36. Yi, N., Huang, Y. and Liu, H. (2013). A direct discontinous Galerkin method for the generalized Korteweg–de Vries equation: Energy conservation and boundary effect, Journal of Computational Physics242: 351–366.10.1016/j.jcp.2013.01.031
  37. Yuan, J.-M., Shen, J. and Wu, J. (2008). A dual Petrov–Galerkin method for the Kawahara-type equations, Journal of Scientific Computing34: 48–63.10.1007/s10915-007-9158-4
  38. Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Physical Review Letters15(6): 240–243.10.1103/PhysRevLett.15.240
DOI: https://doi.org/10.1515/amcs-2016-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 555 - 567
Submitted on: Jun 2, 2015
Accepted on: Mar 8, 2016
Published on: Sep 29, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Anna Karczewska, Piotr Rozmej, Maciej Szczeciński, Bartosz Boguniewicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.