Amairi, M. (2015). Recursive set-membership parameter estimation using fractional model, Circuits, Systems, and Signal Processing34(12): 3757–3788.10.1007/s00034-015-0036-2
Amairi, M., Aoun, M., Najar, S. and Abdelkrim, M.N. (2012). Guaranteed frequency-domain identification of fractional order systems: Application to a real system, International Journal of Modelling, Identification and Control17(1): 32–42.10.1504/IJMIC.2012.048637
Amairi, M., Najar, S., Aoun, M. and Abdelkrim, M. (2010). Guaranteed output-error identification of fractional order model, 2nd IEEE International Conference on Advanced Computer Control (ICACC), Shenyang, China, pp. 246–250.
Busłowicz, M. and Ruszewski, A. (2015). Robust stability check of fractional discrete-time linear systems with interval uncertainties, in K.J. Latawiec et al. (Eds.), Advances in Modelling and Control of Non-Integer-Order Systems, Springer, Berlin/Heidelberg, pp. 199–208.10.1007/978-3-319-09900-2_18
Clement, T. and Gentil, S. (1988). Reformulation of parameter identification with unknown-but-bounded errors, Mathematics and Computers in Simulation30(3): 257–270.10.1016/0378-4754(88)90005-5
Ferreres, G. and M’Saad, M. (1997). Estimation of output error models in the presence of unknown but bounded disturbances, International Journal of Adaptive Control and Signal Processing11(2): 115–140.10.1002/(SICI)1099-1115(199703)11:2<;115::AID-ACS426>3.0.CO;2-4
Fogel, E. and Huang, Y. (1982). On the value of information in system identification-bounded noise case, Automatica18(2): 229–238.10.1016/0005-1098(82)90110-8
Machado, J.T., Kiryakova, V. and Mainardi, F. (2011). Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation16(3): 1140–1153.10.1016/j.cnsns.2010.05.027
Malti, R., Raïssi, T., Thomassin, M. and Khemane, F. (2010). Set membership parameter estimation of fractional models based on bounded frequency domain data, Communications in Nonlinear Science and Numerical Simulation15(4): 927–938.10.1016/j.cnsns.2009.05.005
Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, Lille, France, Vol. 2, pp. 963–968.
Milanese, M., Norton, J., Piet-Lahanier, H. and Walter, E. (1996). Bounding Approaches to System Identification, Plenum Press, London.10.1007/978-1-4757-9545-5
Narang, A., Shah, S. and Chen, T. (2011). Continuous-time model identification of fractional-order models with time delays, Control Theory & Applications5(7): 900–912.10.1049/iet-cta.2010.0718
Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics and Computer Science22(3): 533–538, DOI: 10.2478/v10006-012-0040-7.10.2478/v10006-012-0040-7
Polyak, B.T., Nazin, S.A., Durieu, C. and Walter, E. (2004). Ellipsoidal parameter or state estimation under model uncertainty, Automatica40(7): 1171–1179.10.1016/j.automatica.2004.02.014
Raissi, T., Ramdani, N. and Candau, Y. (2004). Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica40(10): 1771–1777.10.1016/j.automatica.2004.05.006
Victor, S., Malti, R., Garnier, H., Oustaloup, A. (2013). Parameter and differentiation order estimation in fractional models, Automatica49(4): 926–935.10.1016/j.automatica.2013.01.026
Yakoub, Z., Chetoui, M., Amairi, M. and Aoun, M. (2015). A bias correction method for fractional closed-loop system identification, Journal of Process Control33: 25–36.10.1016/j.jprocont.2015.05.005