Have a personal or library account? Click to login

Controllability criteria for time–delay fractional systems with a retarded state

By:
Open Access
|Sep 2016

References

  1. Babiarz, A., Grzejszczak, T., Łegowski, A. and Niezabitowski, M. (2016). Controllability of discrete-time switched fractional order systems, Proceedings of the 12th World Congress on Intelligent Control and Automation, Guilin, China, pp. 1754–1757.
  2. Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal and Applied Mathematics and Computer Science22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0
  3. Balachandran, K. and Kokila, J. (2013). Controllability of fractional dynamical systems with prescribed controls, IET Control Theory and Applications7(9): 1242–1248.10.1049/iet-cta.2012.0049
  4. Balachandran, K., Kokila, J. and Trujillo, J. (2012a). Relative controllability of fractional dynamical systems with multiple delays in control, Computers and Mathematics with Appllications64(10): 3037–3045.10.1016/j.camwa.2012.01.071
  5. Balachandran, K., Park, J. and Trujillo, J. (2012b). Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis75(4): 1919–1926.10.1016/j.na.2011.09.042
  6. Balachandran, K., Zhou, Y. and Kokila, J. (2012c). Relative controllability of fractional dynamical systems with delays in control, Communications in Nonlinear Science and Numerical Simulation17(9): 3508–3520.10.1016/j.cnsns.2011.12.018
  7. Busłowicz, M. (2012). Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences60(2): 270–284.10.2478/v10175-012-0037-2
  8. Busłowicz, M. (2014). Controllability, reachability and minimum energy control of fractional discrete-time linear systems with multiple delays in state, Bulletin of the Polish Academy of Sciences: Technical Sciences62(2): 233–239.10.2478/bpasts-2014-0023
  9. Chen, Y., Ahn, H. and Xue, D. (2006). Robust controllability of interval fractional order linear time invariant systems, Signal Processes86(10): 2794–2802.10.1016/j.sigpro.2006.02.021
  10. Chikriy, A. and Matichin, I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo and Miller–Ross, Journal of Automation and Information Science40(6): 1–11.10.1615/JAutomatInfScien.v40.i6.10
  11. Chukwu, E. (1979). Euclidean controllability of linear delay systems with limited controls, IEEE Transactions on Automatic Control24(5): 798–800.10.1109/TAC.1979.1102140
  12. Deng, W., Li, C. and Lu, J. (2007). Stability analysis of linear fractional differential systems with multiple time delays, Nonlinear Dynamics48: 409–416.10.1007/s11071-006-9094-0
  13. Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Science, Vol. 411, Springer-Verlag, Berlin/Heidelberg.
  14. Kaczorek, T. (2014a). An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences62(2): 227–231.10.2478/bpasts-2014-0022
  15. Kaczorek, T. (2014b). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science24(2): 335–340, DOI: 10.2478/amcs-2014-0025.10.2478/amcs-2014-0025
  16. Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13, Springer International Publishing, Cham.
  17. Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam.
  18. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  19. Klamka, J. (2008). Constrained controllability of semilinear systems with delayed controls, Bulletin of the Polish Academy of Sciences: Technical Sciences56(4): 333–337.
  20. Klamka, J. (2009). Constrained controllability of semilinear systems with delays, Nonlinear Dynamics56(1): 169–177.10.1007/s11071-008-9389-4
  21. Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Balenau (Ed.), New Trends Nanotechology and Fractional Calculus Applications, Springer, Dordrecht, pp. 503–509.10.1007/978-90-481-3293-5_45
  22. Klamka, J. (2011). Local controllability of fractional discrete-time semilinear systems, Acta Mechanica at Automatica5(2): 55–58.
  23. Klamka, J., Czornik, A., Niezabitowski, M. and Babiarz, A. (2014). Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional Controllability criteria for time-delay fractional systems with a retarded state systems, Proceedings of the 11th IEEE International Conference on Control and Automation, Taichung, Taiwan, pp. 1210–1214.
  24. Lee, E. and Marcus, L. (1967). Foundations of Optimal Control Theory, John Wiley and Sons, New York, NY.
  25. Manitius, A. (1974). Optimal control of hereditary systems, in J.W. Weil (Ed.), Control Theory and Topics in Functional Analysis, Vol. 3, International Centre for Theoretical Physics, Trieste, pp. 43–178.
  26. Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Calculus, John Wiley andSons, New York, NY.
  27. Monje, A., Chen, Y., Viagre, B., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Control: Fundamentals and Applications, Springer-Verlag, London.10.1007/978-1-84996-335-0
  28. Oldham, K. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
  29. Pawłuszewicz, E. and Mozyrska, D. (2013). Constrained controllability of h-difference linear systems with two fractional orders, in W. Mitkowski et al. (Ed.), Advances in the Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 257, Springer International Publishing, Cham, pp. 67–75.10.1007/978-3-319-00933-9_6
  30. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  31. Rolewicz, S. (1987). Functional Analysis and Control Theory: Linear Systems, Mathematics and Its Applications, Springer, Dordrecht.
  32. Sabatier, J., Agrawal, O. and Tenreiro Machado, J. (Eds.) (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, Dordrecht.10.1007/978-1-4020-6042-7
  33. Sakthivel, R., Ren, Y. and Mahmudov, N. (2011). On the approximate controllability of semilinear fractional differential systems, Computers and Mathematics with Applications62(3): 1451–1459.10.1016/j.camwa.2011.04.040
  34. Samko, S., Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordan and Breach Science Publishers, Philadelphia, PA.
  35. Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science13(4): 469–479.
  36. Sikora, B. (2005). On constrained controllability of dynamical systems with multiple delays in control, Applicationes Mathematicae32(1): 87–101.10.4064/am32-1-7
  37. Sikora, B. (2016). Controllability of time-delay fractional systems with and without constraints, IET Control Theory and Applications10(3): 320–327.10.1049/iet-cta.2015.0935
  38. Sikora, B. and Klamka, J. (2012). On constrained stochastic controllability of dynamical systems with multiple delays in control, Bulletin of the Polish Academy of Sciences: Technical Sciences60(12): 301–305.10.2478/v10175-012-0040-7
  39. Trzasko, B. (2008). Reachability and controllability of positive fractional discrete-time systems with delay, Journal of Automation Mobile Robotics and Intelligent Systems2(3): 43–47.
  40. Wang, J. and Zhou, Y. (2012). Complete controllability of fractional evolution systems, Communications in Nonlinear Science and Numerical Simulation17(11): 4346–4355.10.1016/j.cnsns.2012.02.029
  41. Wei, J. (2012). The controllability of fractional control systems with control delay, Computers and Mathematics with Applications64(10): 3153–3159.10.1016/j.camwa.2012.02.065
  42. Zhang, H., Cao, J. and Jiang, W. (2013). Controllability criteria for linear fractional differential systems with state delay and impulses, Journal of Applied Mathematics, Article ID: 146010.10.1155/2013/146010
  43. Zhao, X., Liu, X., Yin, S. and Li, H. (2013). Stability of a class of switched positive linear time-delay systems, International Journal of Robust and Nonlinear Control23(5): 578–589.10.1002/rnc.2777
  44. Zhao, X., Liu, X., Yin, S. and Li, H. (2014). Improved results on stability of continuous-time switched positive linear systems, Automatica50(2): 614–621.10.1016/j.automatica.2013.11.039
DOI: https://doi.org/10.1515/amcs-2016-0036 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 521 - 531
Submitted on: Dec 16, 2015
Accepted on: May 10, 2016
Published on: Sep 29, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Beata Sikora, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.