Babiarz, A., Grzejszczak, T., Łegowski, A. and Niezabitowski, M. (2016). Controllability of discrete-time switched fractional order systems, Proceedings of the 12th World Congress on Intelligent Control and Automation, Guilin, China, pp. 1754–1757.
Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal and Applied Mathematics and Computer Science22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0
Balachandran, K. and Kokila, J. (2013). Controllability of fractional dynamical systems with prescribed controls, IET Control Theory and Applications7(9): 1242–1248.10.1049/iet-cta.2012.0049
Balachandran, K., Kokila, J. and Trujillo, J. (2012a). Relative controllability of fractional dynamical systems with multiple delays in control, Computers and Mathematics with Appllications64(10): 3037–3045.10.1016/j.camwa.2012.01.071
Balachandran, K., Park, J. and Trujillo, J. (2012b). Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis75(4): 1919–1926.10.1016/j.na.2011.09.042
Balachandran, K., Zhou, Y. and Kokila, J. (2012c). Relative controllability of fractional dynamical systems with delays in control, Communications in Nonlinear Science and Numerical Simulation17(9): 3508–3520.10.1016/j.cnsns.2011.12.018
Busłowicz, M. (2012). Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences60(2): 270–284.10.2478/v10175-012-0037-2
Busłowicz, M. (2014). Controllability, reachability and minimum energy control of fractional discrete-time linear systems with multiple delays in state, Bulletin of the Polish Academy of Sciences: Technical Sciences62(2): 233–239.10.2478/bpasts-2014-0023
Chen, Y., Ahn, H. and Xue, D. (2006). Robust controllability of interval fractional order linear time invariant systems, Signal Processes86(10): 2794–2802.10.1016/j.sigpro.2006.02.021
Chikriy, A. and Matichin, I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo and Miller–Ross, Journal of Automation and Information Science40(6): 1–11.10.1615/JAutomatInfScien.v40.i6.10
Chukwu, E. (1979). Euclidean controllability of linear delay systems with limited controls, IEEE Transactions on Automatic Control24(5): 798–800.10.1109/TAC.1979.1102140
Deng, W., Li, C. and Lu, J. (2007). Stability analysis of linear fractional differential systems with multiple time delays, Nonlinear Dynamics48: 409–416.10.1007/s11071-006-9094-0
Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Science, Vol. 411, Springer-Verlag, Berlin/Heidelberg.
Kaczorek, T. (2014a). An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences62(2): 227–231.10.2478/bpasts-2014-0022
Kaczorek, T. (2014b). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science24(2): 335–340, DOI: 10.2478/amcs-2014-0025.10.2478/amcs-2014-0025
Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Systems and Electrical Circuits, Studies in Systems, Decision and Control, Vol. 13, Springer International Publishing, Cham.
Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam.
Klamka, J. (2008). Constrained controllability of semilinear systems with delayed controls, Bulletin of the Polish Academy of Sciences: Technical Sciences56(4): 333–337.
Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Balenau (Ed.), New Trends Nanotechology and Fractional Calculus Applications, Springer, Dordrecht, pp. 503–509.10.1007/978-90-481-3293-5_45
Klamka, J., Czornik, A., Niezabitowski, M. and Babiarz, A. (2014). Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional Controllability criteria for time-delay fractional systems with a retarded state systems, Proceedings of the 11th IEEE International Conference on Control and Automation, Taichung, Taiwan, pp. 1210–1214.
Manitius, A. (1974). Optimal control of hereditary systems, in J.W. Weil (Ed.), Control Theory and Topics in Functional Analysis, Vol. 3, International Centre for Theoretical Physics, Trieste, pp. 43–178.
Monje, A., Chen, Y., Viagre, B., Xue, D. and Feliu, V. (2010). Fractional-Order Systems and Control: Fundamentals and Applications, Springer-Verlag, London.10.1007/978-1-84996-335-0
Pawłuszewicz, E. and Mozyrska, D. (2013). Constrained controllability of h-difference linear systems with two fractional orders, in W. Mitkowski et al. (Ed.), Advances in the Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 257, Springer International Publishing, Cham, pp. 67–75.10.1007/978-3-319-00933-9_6
Sabatier, J., Agrawal, O. and Tenreiro Machado, J. (Eds.) (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, Dordrecht.10.1007/978-1-4020-6042-7
Sakthivel, R., Ren, Y. and Mahmudov, N. (2011). On the approximate controllability of semilinear fractional differential systems, Computers and Mathematics with Applications62(3): 1451–1459.10.1016/j.camwa.2011.04.040
Samko, S., Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordan and Breach Science Publishers, Philadelphia, PA.
Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science13(4): 469–479.
Sikora, B. (2005). On constrained controllability of dynamical systems with multiple delays in control, Applicationes Mathematicae32(1): 87–101.10.4064/am32-1-7
Sikora, B. (2016). Controllability of time-delay fractional systems with and without constraints, IET Control Theory and Applications10(3): 320–327.10.1049/iet-cta.2015.0935
Sikora, B. and Klamka, J. (2012). On constrained stochastic controllability of dynamical systems with multiple delays in control, Bulletin of the Polish Academy of Sciences: Technical Sciences60(12): 301–305.10.2478/v10175-012-0040-7
Trzasko, B. (2008). Reachability and controllability of positive fractional discrete-time systems with delay, Journal of Automation Mobile Robotics and Intelligent Systems2(3): 43–47.
Wang, J. and Zhou, Y. (2012). Complete controllability of fractional evolution systems, Communications in Nonlinear Science and Numerical Simulation17(11): 4346–4355.10.1016/j.cnsns.2012.02.029
Wei, J. (2012). The controllability of fractional control systems with control delay, Computers and Mathematics with Applications64(10): 3153–3159.10.1016/j.camwa.2012.02.065
Zhang, H., Cao, J. and Jiang, W. (2013). Controllability criteria for linear fractional differential systems with state delay and impulses, Journal of Applied Mathematics, Article ID: 146010.10.1155/2013/146010
Zhao, X., Liu, X., Yin, S. and Li, H. (2013). Stability of a class of switched positive linear time-delay systems, International Journal of Robust and Nonlinear Control23(5): 578–589.10.1002/rnc.2777
Zhao, X., Liu, X., Yin, S. and Li, H. (2014). Improved results on stability of continuous-time switched positive linear systems, Automatica50(2): 614–621.10.1016/j.automatica.2013.11.039