Have a personal or library account? Click to login
A discrete-time queueing system with changes in the vacation times Cover

A discrete-time queueing system with changes in the vacation times

By: Ivan Atencia  
Open Access
|Jul 2016

References

  1. Alfa, A. (2010). Queueing Theory for Telecommunications 1: Discrete Time Modelling of a Single Node System, Springer, New York, NY.10.1007/978-1-4419-7314-6
  2. Artalejo, J. (2000). G-networks: A versatile approach for work removal in queueing networks, European Journal of Operational Research 126(2): 233-249.10.1016/S0377-2217(99)00476-2
  3. Atencia, I. (2014). A discrete-time system with service control and repairs, International Journal of Applied Mathematics and Computer Science 24(3): 471-484, DOI: 10.2478/amcs-2014-0035.10.2478/amcs-2014-0035
  4. Atencia, I. (2015). A discrete-time system queueing system with server breakdowns and changes in the repair times, Annals of Operations Research 235(1): 37-49.10.1007/s10479-015-1940-3
  5. Atencia, I. and Moreno, P. (2004). The discrete-time Geo/Geo/1 queue with negative customers and disasters, Computers and Operations Research 31(9): 1537-1548.10.1016/S0305-0548(03)00107-2
  6. Atencia, I. and Moreno, P. (2005). A single-server G-queue in discrete-time with geometrical arrival and service process, Performance Evaluation 59(1): 85-97.10.1016/j.peva.2004.07.019
  7. Bocharov, P.P., D’Apice, C., Pechinkin, A.V. and Salerno, S. (2004). Queueing Theory: Modern Probability and Statistics, VSP, Utrecht/Boston, MA.10.1515/9783110936025
  8. Bruneel, H. and Kim, B. (1993). Discrete-time Models for Communication Systems Including ATM, Kluwer Academic Publishers, New York, NY.10.1007/978-1-4615-3130-2
  9. Brush, A., Bongshin, L., Ratul, M., Sharad, A., Stefan, S. and Colin, D. (2011). Home automation in the wild: Challenges and opportunities, ACM Conference on Computer-Human Interaction, Vancouver, Canada, pp. 2115-2124.
  10. Cascone, A., Manzo, P., Pechinkin, A. and Shorgin, S. (2011). A Geom/G/1/n system with LIFO discipline without interrupts and constrained total amount of customers, Automation and Remote Control 72(1): 99-110.10.1134/S0005117911010085
  11. Chao, X., Miyazawa, M. and Pinedo, M. (1999). Queueing Networks: Customers, Signals and Product Form Solutions, John Wiley and Sons, Chichester.
  12. Cooper, R. (1981). Introduction to Queueing Theory, 2nd Edn., North-Holland, New York, NY.
  13. Fiems, D. and Bruneel, H. (2013). Discrete-time queueing systems with Markovian preemptive vacations, Mathematical and Computer Modelling 57(3-4): 782-792.10.1016/j.mcm.2012.09.003
  14. Fiems, D., Steyaert, B. and Bruneel, H. (2002). Randomly interrupted GI/G/1 queues: Service strategies and stability issues, Annals of Operations Research 112(1): 171-183.10.1023/A:1020937324199
  15. Gelenbe, E. and Labed, A. (1998). G-networks with multiple classes of signals and positive customers, European Journal of Operational Research 108(1): 293-305.10.1016/S0377-2217(97)00371-8
  16. Guzmán-Navarro, F. andMerino-Córdoba, S. (2015). Gestión de la energía y gestión técnica de edificios, 1st Edn., RA-MA, Málaga.
  17. Harrison, P.G., Patel, N.M. and Pitel, E. (2000). Reliability modelling using G-queues, European Journal of Operational Research 126(2): 273-287.10.1016/S0377-2217(99)00478-6
  18. Hochendoner, P., Curtis, O. and Mather, W.H. (2014). A queueing approach to multi-site enzyme kinetics, Interface Focus 4(3): 1-9, DOI: 10.1098/rsfs.2013.0077.10.1098/rsfs.2013.0077399658924904740
  19. Hunter, J. (1983). Mathematical Techniques of Applied Probability, Academic Press, New York, NY.10.1016/B978-0-12-361801-6.50007-1
  20. Kim, T., Bauer, L., Newsome, J., Perrig, A. and Walker, J. (2010). Challenges in access right assignment for secure home networks, HotSec 2010, CA, USA, pp. 1-6.
  21. Kleinrock, L. (1976). Queueing Theory, John Wiley and Sons, New York, NY.
  22. Krishnamoorthy, A., Gopakumar, B. and Viswanath Narayanan, V. (2012). A retrial queue with server interruptions, resumption and restart of service, Operations Research International Journal 12(2): 133-149.10.1007/s12351-011-0112-8
  23. Krishnamoorthy, A., Pramod, P. and Chakravarthy, S. (2013). A note on characterizing service interruptions with phase-type distribution, Journal of Stochastic Analysis and Applications 31(4): 671-683.10.1080/07362994.2013.800367
  24. Krishnamoorthy, A., Pramod, P. and Chakravarthy, S. (2014). A survey on queues with interruptions, TOP 22(1): 290-320.10.1007/s11750-012-0256-6
  25. Lakatos, L., Szeidl, L. and Telek, M. (2013). Introduction to Queueing Systems with Telecommunication Applications, Springer, New York, NY.10.1007/978-1-4614-5317-8
  26. Lucero, S. and Burden, K. (2010). Home Automation and Control, ABI Research, New York, NY.
  27. Meykhanadzhyan, L.A., Milovanova, T.A., Pechinkin, A.V. and Razumchik, R.V. (2014). Stationary distribution in a queueing system with inverse service order and generalized probabilistic priority, Informatika Primenenia 8(3): 28-38, (in Russian).
  28. Milovanova, T.A. and Pechinkin, A.V. (2013). Stationary characteristics of the queueing system with LIFO service, probabilistic priority, and hysteric policy, Informatika Primenenia 7(1): 22-35, (in Russian).
  29. Moreno, P. (2006). A discrete-time retrial queue with unreliable server and general service lifetime, Journal of Mathematical Sciences 132(5): 643-655.10.1007/s10958-006-0009-x
  30. Oliver, C.I. and Olubukola, A.I. (2014). M/M/1 multiple vacation queueing systems with differentiated vacations, Modelling and Simulation in Engineering 2014(1): 1-6.10.1155/2014/158247
  31. Park, H.M., Yang, W.S. and Chae, K.C. (2009). The Geo/G/1 queue with negative customers and disasters, Stochastic Models 25(4): 673-688.10.1080/15326340903291347
  32. Pechinkin, A. and Svischeva, T. (2004). The stationary state probability in the BMAP/G/1/r queueing system with inverse discipline and probabilistic priority, 24th International Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, pp. 141-174.
  33. Piórkowski, A. and Werewka, J. (2010). Minimization of the total completion time for asynchronous transmission in a packet data-transmission system, International Journal of Applied Mathematics and Computer Science 20(2): 391-400, DOI: 10.2478/v10006-010-0029-z.10.2478/v10006-010-0029-z
  34. Takagi, H. (1993). Queueing analysis: A Foundation of Performance Evaluation, Discrete-Time Systems, North-Holland, Amsterdam.
  35. Tian, N. and Zhang, Z. (2002). The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems 40(3): 283-294.10.1023/A:1014711529740
  36. Tian, N. and Zhang, Z. (2006). Vacation Queueing Models: Theory and Applications, Springer, New York, NY.10.1007/978-0-387-33723-4
  37. Walraevens, J., Steyaert, B. and Bruneel, H. (2006). A preemptive repeat priority queue with resampling: Performance analysis, Annals of Operations Research 146(1): 189-202.10.1007/s10479-006-0053-4
  38. Wieczorek, R. (2010). Markov chain model of phytoplankton dynamics, International Journal of Applied Mathematics and Computer Science 20(4): 763-771, DOI: 10.2478/v10006-010-0058-7.10.2478/v10006-010-0058-7
  39. Woodward, M.E. (1994). Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society, London.
  40. Xeung, W., Jin, D., Dae, W. and Kyung, C. (2007). The Geo/G/1 queue with disasters and multiple working vacations, Stochastic Models 23(4): 537-549. 10.1080/15326340701645926
DOI: https://doi.org/10.1515/amcs-2016-0027 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 379 - 390
Submitted on: Jun 9, 2015
Accepted on: Jan 18, 2016
Published on: Jul 2, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Ivan Atencia, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.