Have a personal or library account? Click to login
The control of drilling vibrations: A coupled PDE-ODE modeling approach Cover

The control of drilling vibrations: A coupled PDE-ODE modeling approach

Open Access
|Jul 2016

References

  1. Anabtawiii, M. (2011). Practical stability of nonlinear stochastic hybrid parabolic systems of Itô-type: Vector Lyapunov functions approach, Nonlinear Analysis: Real World Applications 12(1): 1386-1400.10.1016/j.nonrwa.2010.09.029
  2. Bailey, J. and Finnie, I. (1960). An analytical study of drillstring vibration, Journal of Engineering for Industry, Transactions of the ASME 82(2): 122-128.10.1115/1.3663017
  3. Ben-Tal, A. and Zibulevsky, M. (1997). Penalty/barrier multiplier methods for convex programming problems, SIAM Journal on Optimization 7(2): 347-366.10.1137/S1052623493259215
  4. Boussaada, I., Mounier, H., Niculescu, S. and Cela, A. (2012). Analysis of drilling vibrations: A time delay system approach, 20th Mediterranean Conference on Control and Automation MED, Barcelona, Spain, pp. 610-614.
  5. Canudas-de Wit, C., Rubio, F. and Corchero, M. (2008). D-OSKIL: A new mechanism for controlling stick-slip oscillations in oil well drillstrings, IEEE Transactions on Control Systems Technology 16(6): 1177-1191.10.1109/TCST.2008.917873
  6. Challamel, N. (2000). Rock destruction effect on the stability of a drilling structure, Journal of Sound and Vibration 233(2): 235-254.10.1006/jsvi.1999.2811
  7. Detournay, E. and Defourny, P. (1992). A phenomenological model for the drilling action of drag bits, International Journal of Rock Mechanics, Mining Science and Geomechanical Abstracts 29(1): 13-23.10.1016/0148-9062(92)91041-3
  8. Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples, International Journal of Control 61(6): 1327-1361.10.1080/00207179508921959
  9. Fridman, E. and Dambrine, M. (2010). Control under quantization, saturation and delay: A LMI approach, Automatica 45(10): 2258-2264.10.1016/j.automatica.2009.05.020
  10. Fridman, E., Dambrine, M. and Yeganefar, N. (2008). Input to state stability of systems with time-delay: A matrix inequalities approach, Automatica 44(9): 2364-2369.10.1016/j.automatica.2008.01.012
  11. Fridman, E., Mondié, S. and Saldivar, B. (2010). Bounds on the response of a drilling pipe model, IMA Journal of Mathematical Control and Information 27(4): 513-526.10.1093/imamci/dnq024
  12. Grujić, L.T. (1973). On practical stability, International Journal of Control 17(4): 881-887.10.1080/00207177308932431
  13. Halsey, G., Kyllingstad, A. and Kylling, A. (1988). Torque feedback used to cure slip-stick motion, Proceedings of the 63rd Society of Petroleum Engineers Drilling Engineering Annual Technical Conference and Exhibition, Houston, TX, USA, pp. 277-282.
  14. Jansen, J. (1993). Nonlinear Dynamics of Oilwell Drillstrings, Ph.D. thesis, Delft University of Technology, Delft.
  15. Jansen, J. and van den Steen, L. (1995). Active damping of self-excited torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 179(4): 647-668.10.1006/jsvi.1995.0042
  16. Javanmardi, K. and Gaspard, D. (1992). Application of soft torque rotary table in mobile bay, Technical Report IADC/SPE 23913, International Association of Drilling Contractors/Society of Petroleum Engineers, Dallas, TX.10.2118/23913-MS
  17. Khalil, H. (2002). Nonlinear Systems, Third Edition, Prentice-Hall, Upper Saddle River, NJ.
  18. Knuppel, T., Woittennek, F., Boussaada, I., Mounier, H. and Niculescu, S. (2014). Flatness-based control for a non-linear spatially distributed model of a drilling system, in A. Seuret et al. (Eds.), Low Complexity Controllers for Time Delay Systems: Advances in Delays and Dynamics, Volume 2, Springer, Cham, pp. 205-218.10.1007/978-3-319-05576-3_14
  19. Kŏcvara, M. and Stingl, M. (2003). PENNON-a code for nonlinear and convex semidefinite programming, Optimization Methods and Software 8(3): 317-333.10.1080/1055678031000098773
  20. La Salle, J. and Lefschetz, S. (1961). Stability by Lyapunov’s Direct Method: With Applications, Academic Press, New York, NY.
  21. Lakshmikantham, V., Leela, S. and Martynyuk, A. (1990). Practical Stability of Nonlinear Systems, World Scientific Publishing Company, Singapore.10.1142/1192
  22. Levinson, N. (1944). Transformation theory of non-linear differential equations of the second order, Annals of Mathematics 45(4): 723-737.10.2307/1969299
  23. Lu, H., Dumon, J. and de Wit, C.C. (2009). Experimental study of the D-OSKIL mechanism for controlling the stick-slip oscillations in a drilling laboratory testbed, 2009 IEEE Control Applications (CCA) & Intelligent Control (ISIC), St. Petersburg, Russia, pp. 1551-1556.
  24. Ma, R., Dimirovski, G. and Zhao, J. (2013). Backstepping robust H∞ control for a class of uncertain switched nonlinear systems under arbitrary switchings, Asian Journal of Control 15(1): 41-50.10.1002/asjc.512
  25. Navarro-López, E. and Cortés, D. (2007a). Avoiding harmful oscillations in a drillstring through dynamical analysis, Journal of Sound and Vibration 307(1): 152-171.10.1016/j.jsv.2007.06.037
  26. Navarro-López, E. and Cortés, D. (2007b). Sliding-mode control of a multi-DOF oilwell drillstring with stick-slip oscillations, Proceedings of the 2007 American Control Conference, New York, NY, USA, pp. 3837-3842.10.1109/ACC.2007.4282198
  27. Navarro-López, E. and Licéaga-Castro, E. (2009). Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations, Chaos, Solitons and Fractals 41(4): 2035-2044.10.1016/j.chaos.2008.08.008
  28. Navarro-López, E. and Suárez, R. (2004). Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings, Proceedings of the 2004 IEEE International Conference on Control Applications Taipei, Taiwan, pp. 1454-1460.
  29. Pavone, D. and Desplans, J. (1994). Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling, Technical Report SPE 28324, Society of Petroleum Engineers, Dallas, TX.10.2118/28324-MS
  30. Rasvan, V. (2006). Three lectures on dissipativeness, IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, pp. 167-177.
  31. Saldivar, B., Knuppel, T., Woittennek, F., Boussaada, I., Mounier, H. and Niculescu, S. (2014). Flatness-based control of torsional-axial coupled drilling vibrations, 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, pp. 7324-7329.
  32. Saldivar, B. and Mondié, S. (2013). Drilling vibration reduction via attractive ellipsoid method, Journal of the Franklin Institute 350(3): 485-502.10.1016/j.jfranklin.2012.12.010
  33. Saldivar, B., Mondié, S., Loiseau, J. and Rasvan, V. (2013). Suppressing axial torsional coupled vibrations in oilwell drillstrings, Journal of Control Engineering and Applied Informatics 15(1): 3-10.
  34. Serrarens, A., van de Molengraft, M., Kok, J. and van den Steeen, L. (1998). H∞ control for suppressing stick-slip in oil well drillstrings, IEEE Control Systems 18(2): 19-30.10.1109/37.664652
  35. Skaugen, E. (1987). The effects of quasi-random drill bit vibrations upon drillstring dynamic behavior, Technical Report SPE 16660, Society of Petroleum Engineers, Dallas, TX.10.2118/16660-MS
  36. Suh, Y., Kang, H. and Ro, Y. (2006). Stability condition of distributed delay systems based on an analytic solution to Lyapunov functional equations, Asian Journal of Control 8(1): 91-96.10.1111/j.1934-6093.2006.tb00258.x
  37. Timoshenko, S. and Young, D. (1955). Vibrations Problems in Engineering, Third Edition, D. Van Nostrand Company, Princeton, NJ.
  38. Tucker, R. and Wang, C. (1999). On the effective control of torsional vibrations in drilling systems, Journal of Sound and Vibration 224(1): 101-122.10.1006/jsvi.1999.2172
  39. Weaver, W., Timoshenko, S. and Young, D. (1990). Vibrations Problems in Engineering, Fifth Edition, John Wiley & Sons, New York, NY.
  40. Wu, J., Li, S. and Chai, S. (2010). Exact controllability of wave equations with variable coefficients coupled in parallel, Asian Journal of Control 12(5): 650-655.10.1002/asjc.179
  41. Yang, L. and Wang, J. (2014). Stability of a damped hyperbolic Timoshenko system coupled with a heat equation, Asian Journal of Control 16(2): 546-555.10.1002/asjc.739
  42. Yoshizawa, T. (1960). Stability and boundedness of systems, Archive for Rational Mechanics and Analysis 6(1): 409-421.10.1007/BF00276172
  43. Yoshizawa, T. (1966). Stability Theory by Lyapunov’s Second Method, The Mathematical Society of Japan, Tokyo.
  44. Zhang, X. and Zuazua, E. (2004). Polynomial decay and control of a 1-D hyperbolic-parabolic coupled system, Journal of Differential Equations 204(2): 380-438.10.1016/j.jde.2004.02.004
  45. Zhou, Z. and Tang, S. (2012). Boundary stabilization of a coupled wave-ode system with internal anti-damping, International Journal of Control 85(11): 683-693. 10.1080/00207179.2012.696704
DOI: https://doi.org/10.1515/amcs-2016-0024 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 335 - 349
Submitted on: Apr 4, 2015
Accepted on: Dec 2, 2015
Published on: Jul 2, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Belem Saldivar, Sabine Mondié, Juan Carlos Ávila Vilchis, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.