Have a personal or library account? Click to login
Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations Cover

Adaptive predictions of the euro/złoty currency exchange rate using state space wavelet networks and forecast combinations

Open Access
|Mar 2016

References

  1. BIS (2013). Foreign Exchange Turnover in April 2013: Preliminary Global Results, Triennial Central Bank Survey, Bank of International Settlements, Basel.
  2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics31(3): 307–327.10.1016/0304-4076(86)90063-1
  3. Borowa, A., Brdyś, M.A. and Mazur, K. (2007). Modelling of wastewater treatment plant for monitoring and control purposes by state-space wavelet networks, International Journal of Computers, Communications & Control2(2): 121–131.10.15837/ijccc.2007.2.2345
  4. Brdyś, M.A., Borowa, A., Idźkowiak, P. and Brdyś, M.T. (2009). Adaptive predictions of stock exchange indices state space wavelet networks, International Journal of Applied Mathematics and Computer Science19(2): 337–348, DOI: 10.2478/v10006-009-0029-z.10.2478/v10006-009-0029-z
  5. CSO (2014). Foreign Trade in January–December 2013, Statistical Information and Elaborations, Central Statistical Office, Warsaw.
  6. Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM Journal on Mathematical Analysis15(4): 723–736.10.1137/0515056
  7. Guidolin, M. and Timmermann, A. (2009). Forecasts of US short-term interest rates: A flexible forecast combination approach, Journal of Econometrics150(2): 297–311.10.1016/j.jeconom.2008.12.004
  8. Hajek, B. (1988). Cooling schedules for optimal annealing, Mathematics of Operations Research13(2): 311–329.10.1287/moor.13.2.311
  9. Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G. and Shang, H.L. (2011). Optimal combination forecasts for hierarchical time series, Computational Statistics and Data Analysis55(9): 2579–2589.10.1016/j.csda.2011.03.006
  10. Jacobson, S.H., Hall, S.N., Mclay, L.A. and Orosz, J.E. (2005). Performance analysis of cyclical simulated annealing algorithms, Methodology and Computing in Applied Probability7(2): 183–201.10.1007/s11009-005-1482-2
  11. Karafyllidis, I. (1999). A simulator for single-electron tunnel devices and circuits based on simulated annealing, Superlattices and Microstructures25(4): 567–572.10.1006/spmi.1998.0681
  12. Kawakami, K. (2013). Conditional forecast selection from many forecasts: An application to the yen/dollar exchange rate, Journal of the Japanese and International Economies28(C): 1–18.10.1016/j.jjie.2013.01.006
  13. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by simulated annealing, Science220(4598): 671–680.10.1126/science.220.4598.671
  14. Kulawski, G.J. and Brdyś, M.A. (2000). Stable adaptive control with recurrent networks, Automatica36(1): 5–22.10.1016/S0005-1098(99)00092-8
  15. Kuo, R.J., Chen, C.H. and Hwang, Y.C. (2001). An intelligent stock trading support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets and Systems118(1): 21–45.10.1016/S0165-0114(98)00399-6
  16. Locatelli, M. (2000). Convergence and first hitting time of simulated annealing algorithms for continuous global optimization, Mathematical Methods of Operations Research54(2): 171–199.10.1007/s001860100149
  17. McCracken, M.W. and Clark, T.E. (2009). Improving forecast accuracy by combining recursive and rolling forecasts, International Economic Review50(2): 363–395.10.1111/j.1468-2354.2009.00533.x
  18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Equations of state calculations by fast computing machines, Journal of Chemical Physics21: 1087–1092.10.1063/1.1699114
  19. NBP (2013). Turnover in the Domestic Foreign Exchange and OTC Derivatives Markets in April 2013, National Bank of Poland, Warsaw.
  20. Pesaran, M.H. and Pick, A. (2011). Forecast combination across estimation windows, Journal of Business Economics and Statistics29(2): 307–318.10.1198/jbes.2010.09018
  21. Qi, R. and Brdyś, M.A. (2008). Stable indirect adaptive control based on discrete-time T–S fuzzy model, Fuzzy Sets and Systems159(8): 900–925.10.1016/j.fss.2007.08.009
  22. Qi, R. and Brdyś, M.A. (2009). Indirect adaptive control based on a self-structuring fuzzy system for nonlinear modelling and control, International Journal of Applied Mathematics and Computer Science19(4): 619–630, DOI: 10.2478/v10006-009-0049-8.10.2478/v10006-009-0049-8
  23. Rapach, D.E., Strauss, J.K. and Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy, The Review of Financial Studies23(2): 821–862.10.1093/rfs/hhp063
  24. Stock, J.H. and Watson, M.W. (2004). Combination forecasts of output growth in a seven-country data set, Journal of Forecasting23(6): 405–430.10.1002/for.928
  25. Tian, J. and Anderson, H.M. (2014). Forecast combinations under structural break uncertainty, International Journal of Forecasting30(1): 161–175.10.1016/j.ijforecast.2013.06.003
  26. Timmermann, A. (2006). Forecast combinations, in G. Elliott et al. (Eds.), Handbook of Economic Forecasting, Elsevier, Amsterdam.
  27. Tsang, P.M., Kwok, P., Choy, S.O., Kwan, R., Ng, S.C., Mak, J., Tsang, J., Koong, K. and Wong, T. (2007). Design and implementation of NN5 for Hong Kong stock price forecasting, Engineering Applications of Artificial Intelligence20(4): 453–461.10.1016/j.engappai.2006.10.002
  28. Zammarreno, J.M. and Pastora, V. (1998). State space neural network: Properties and applications, Neural Networks11(6): 1099–1112.10.1016/S0893-6080(98)00074-4
  29. Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art, International Journal of Forecasting14(1): 35–62.10.1016/S0169-2070(97)00044-7
  30. Zhang, Q. (1992). Wavelet network: The radial structure and an efficient initialization procedure, Technical Report LiTHISY-I-1423, Linkoping University, Linkoping.
  31. Zhang, Q. and Beneveniste, A. (1992). Wavelet networks, IEEE Transactions on Neural Networks3(6): 889–898.10.1109/72.16559118276486
DOI: https://doi.org/10.1515/amcs-2016-0011 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 161 - 173
Submitted on: Jan 15, 2015
Published on: Mar 31, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Mietek A. Brdyś, Marcin T. Brdyś, Sebastian M. Maciejewski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.