Have a personal or library account? Click to login
An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems Cover

An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems

Open Access
|Mar 2016

References

  1. Aschemann, H., Kostin, G.V., Rauh, A. and Saurin, V.V. (2010). Approaches to control design and optimization in heat transfer problems, Journal of Computer and Systems Sciences International49(3): 380–391.10.1134/S106423071003007X
  2. Åström, K. (1970). Introduction to Stochastic Control Theory, Mathematics in Science and Engineering, Academic Press, New York, NY/London.
  3. Bachmayer, M., Ulbrich, H. and Rudolph, J. (2011). Flatness-based control of a horizontally moving erected beam with a point mass, Mathematical and Computer Modelling of Dynamical Systems17(1): 49–69.10.1080/13873954.2010.537517
  4. Bendsten, C. and Stauning, O. (2007). FADBAD++, Version 2.1, http://www.fadbad.com.
  5. Deutscher, J. and Harkort, C. (2008). Vollständige Modale Synthese eines Wärmeleiters, Automatisierungstechnik56(10): 539–548.10.1524/auto.2008.0732
  6. Deutscher, J. and Harkort, C. (2010). Entwurf endlich-dimensionaler Regler für lineare verteilt parametrische Systeme durch Ausgangsbeobachtung, Automatisierungstechnik58(8): 435–446.10.1524/auto.2010.0859
  7. Gehring, N., Knüppel, T., Rudolph, J. and Woittennek, F. (2012). Parameter identification for a heavy rope with internal damping, Proceedings in Applied Mathematics and Mechanics12(1): 725–726.10.1002/pamm.201210351
  8. Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA.10.1137/1.9780898717761
  9. Janiszowski, K.B. (2014). Approximation of a linear dynamic process model using the frequency approach and a non-quadratic measure of the model error, International Journal of Applied Mathematics and Computer Science24(1): 99–109, DOI: 10.2478/amcs-2014-0008.10.2478/amcs-2014-0008
  10. Kersten, J., Rauh, A. and Aschemann, H. (2014). Finite element modeling for heat transfer processes using the method of integro-differential relations with applications in control engineering, IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2014, Międzyzdroje, Poland, pp. 606–611.
  11. Kharitonov, A. and Sawodny, O. (2006). Flatness-based disturbance decoupling for heat and mass transfer processes with distributed control, IEEE International Conference on Control Applications CCA, Munich, Germany, pp. 674–679.
  12. Kostin, G. and Saurin, V. (2012). Integrodifferential Relations in Linear Elasticity, De Gruyter, Berlin.10.1515/9783110271003
  13. Kostin, G.V. and Saurin, V.V. (2006). Modeling of controlled motions of an elastic rod by the method of integro-differential relations, Journal of Computer and Systems Sciences International45(1): 56–63.10.1134/S1064230706010060
  14. Krstic, M. and Smyshlyaev, A. (2010). Adaptive Control of Parabolic PDEs, Princeton University Press, Princeton, NJ.10.1515/9781400835362
  15. Lions, J.L. (1971). Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, NY.10.1007/978-3-642-65024-6
  16. Malchow, F. and Sawodny, O. (2011). Feedforward control of inhomogeneous linear first order distributed parameter systems, American Control Conference on ACC 2011, San Francisco, CA, USA, pp. 3597–3602.
  17. Meurer, T. and Kugi, A. (2009). Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness, Automatica45(5): 1182–1194.10.1016/j.automatica.2009.01.006
  18. Meurer, T. and Zeitz, M. (2003). A novel design of flatness-based feedback boundary control of nonlinear reaction-diffusion systems with distributed parameters, in W. Kang, M. Xiao and C. Borges (Eds.), New Trends in Nonlinear Dynamics and Control, Lecture Notes in Control and Information Science, Vol. 295, Springer, Berlin/Heidelberg, pp. 221–236.10.1007/978-3-540-45056-6_14
  19. Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science23(1): 91–102, DOI: 10.2478/amcs-2013-0008.10.2478/amcs-2013-0008
  20. Rauh, A. and Aschemann, H. (2012). Parameter identification and observer-based control for distributed heating systems—the basis for temperature control of solid oxide fuel cell stacks, Mathematical and Computer Modelling of Dynamical Systems18(4): 329–353.10.1080/13873954.2011.642384
  21. Rauh, A., Butt, S.S. and Aschemann, H. (2013a). Nonlinear state observers and extended Kalman filters for battery systems, International Journal of Applied Mathematics and Computer Science23(3): 539–556, DOI: 10.2478/amcs-2013-0041.10.2478/amcs-2013-0041
  22. Rauh, A., Dittrich, C. and Aschemann, H. (2013b). The method of integro-differential relations for control of spatially two-dimensional heat transfer processes, European Control Conference ECC’13, Zurich, Switzerland, pp. 572–577.10.23919/ECC.2013.6669454
  23. Rauh, A., Kostin, G.V., Aschemann, H., Saurin, V.V. and Naumov, V. (2010). Verification and experimental validation of flatness-based control for distributed heating systems, International Review of Mechanical Engineering4(2): 188–200.
  24. Rauh, A., Senkel, L. and Aschemann, H. (2012a). Sensitivity-based state and parameter estimation for fuel cell systems, 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, pp. 57–62.10.3182/20120620-3-DK-2025.00071
  25. Rauh, A., Senkel, L., Aschemann, H., Kostin, G.V. and Saurin, V.V. (2012b). Reliable finite-dimensional control procedures for distributed parameter systems with guaranteed approximation quality, IEEE Multi-Conference on Systems and Control, Dubrovnik, Croatia, pp. 214–219.
  26. Rauh, A., Senkel, L., Dittrich, C. and Aschemann, H. (2012c). Observer-based predictive temperature control for distributed heating systems based on the method of integrodifferential relations, IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2012, Międzyzdroje, Poland, pp. 528–533.10.1109/MMAR.2012.6347830
  27. Rauh, A., Warncke, J., Kostin, G.V., Saurin, V.V. and Aschemann, H. (2015). Numerical validation of order reduction techniques for finite element modeling of a flexible rack feeder system, European Control Conference ECC’15, Linz, Austria, pp. 1094–1099.
  28. Röbenack, K. (2002). On the efficient computation of higher order maps adfkg(x)$ad_f^k g\left( x \right)$ using Taylor arithmetic and the Campbell–Baker–Hausdorff formula, in A. Zinober and D. Owens (Eds.), Nonlinear and Adaptive Control, Lecture Notes in Control and Information Science, Vol. 281, Springer, Berlin/Heidelberg, pp. 327–336.
  29. Saurin, V.V., Kostin, G.V., Rauh, A. and Aschemann, H. (2011a). Adaptive control strategies in heat transfer problems with parameter uncertainties based on a projective approach, in A. Rauh and E. Auer (Eds.), Modeling, Design, and Simulation of Systems with Uncertainties, Mathematical Engineering, Springer, Berlin/Heidelberg, pp. 309–332.10.1007/978-3-642-15956-5_15
  30. Saurin, V.V., Kostin, G.V., Rauh, A. and Aschemann, H. (2011b). Variational approach to adaptive control design for distributed heating systems under disturbances, International Review of Mechanical Engineering5(2): 244–256.
  31. Saurin, V.V., Kostin, G.V., Rauh, A., Senkel, L. and Aschemann, H. (2012). An integrodifferential approach to adaptive control design for heat transfer systems with uncertainties, 7th Vienna International Conference on Mathematical Modelling MATHMOD 2012, Vienna, Austria, pp. 520–525.
  32. Stengel, R. (1994). Optimal Control and Estimation, Dover Publications, Inc., Mineola, NY.
  33. Tao, G. (2003). Adaptive Control Design and Analysis, Wiley & Sons, Inc., Hoboken, NJ.
  34. Thull, D., Kugi, A. and Schlacher, K. (2010). Tracking Control of Mechanical Distributed Parameter Systems with Applications, Shaker-Verlag, Aachen.
  35. Touré, Y. and Rudolph, J. (2002). Controller design for distributed parameter systems, Encyclopedia of Life Support Systems (EOLSS), http://www.eolss.net/sample-chapters/c18/E6-43-19-02.pdf.
  36. Utz, T., Meurer, T. and Kugi, A. (2011). Trajectory planning for a two-dimensional quasi-linear parabolic PDE based on finite difference semi-discretizations, 18th IFAC World Congress, Milano, Italy, pp. 12632–12637.
  37. Winkler, F.J. and Lohmann, B. (2009). Flatness-based control of a continuous furnace, 3rd IEEE Multi-Conference on Systems and Control (MSC), Saint Petersburg, Russia, pp. 719–724.
DOI: https://doi.org/10.1515/amcs-2016-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 15 - 30
Submitted on: Sep 19, 2014
Published on: Mar 31, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Andreas Rauh, Luise Senkel, Harald Aschemann, Vasily V. Saurin, Georgy V. Kostin, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.