Have a personal or library account? Click to login
Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities Cover

Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities

Open Access
|Dec 2015

References

  1. Babaud, J., Witkin, A.P. and Baudin, M. (1986). Uniqueness of the Gaussian kernel for scale-space filtering, IEEE Transactions on Pattern Analysis and Machine Intelligence8(1): pp. 26–33.
  2. Boor, C. (1978). A Practical Guide to Splines, Springer-Verlag, New York, NY.
  3. Holschneider, M., Kronland-Martinet, R., Morlet, J. and Tchamitchian, P. (1989). A real-time algorithm for signal analysis with help of the wavelet transform, in J.-M. Combes, A. Grossmann and A.P. Tchamitchian (Eds.), Wavelets, Time-Frequency Methods and Phase Space, Springer-Verlag, Berlin/Heidelberg, pp. 286–297.10.1007/978-3-642-97177-8_28
  4. Mallat, S. (1991). Zero-crossings of a wavelet transform, IEEE Transactions on Information Theory37(4): 1019–1033.10.1109/18.86995
  5. Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparce Way, Third Edition, Academic Press, Burlington, MA.
  6. Mallat, S. and Hwang, L.W. (1992). Singularity detection and processing with wavelets, IEEE Transactions on Information Theory38(2): 617–643.10.1109/18.119727
  7. Mallat, S. and Zhong, S. (1992). Characterization of signals from multiscale edges, IEEE Transactions on Pattern Analysis and Machine Intelligence14(7): 710–732.10.1109/34.142909
  8. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (2007). Numerical Recipes The Art of Scientific Computing, Cambridge University Press, Cambridge.
  9. Rakowski, W. (2003). A proof of the necessary condition for perfect reconstruction of signals using the two-channel wavelet filter bank, Bulletin of the Polish Academy of Science: Technical Sciences51(1): 14–23.
  10. Shensa, M.J. (1992). The discrete wavelet transform: Wedding the à trous and Mallat algorithms, IEEE Transactions on Signal Processing40(10): 2464–2482.10.1109/78.157290
  11. Skodras, A., Christopoulos, C. and Ebrahimi, T. (2001). The JPEG 2000 still image compression standard, IEEE Signal Processing Magazine18(5): 36–58.10.1109/79.952804
  12. Tu, C.-L. and Hwang, W.-L. (2005). Analysis of singularities from modulus maxima of complex wavelets, IEEE Transactions on Information Theory51(3): 1049–1062.10.1109/TIT.2004.842706
  13. Unser, M. (1999). Splines: A perfect fit for signal and image processing, IEEE Signal Processing Magazine16(6): 22–38.10.1109/79.799930
  14. Unser, M. and Blu, T. (2003). Mathematical properties of the JPEG2000 wavelet filters, IEEE Transactions on Image Processing12(9): 1080–1090.10.1109/TIP.2003.81232918237979
  15. Witkin, A.P. (1983). Scale-space filtering, Proceedings of the International Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019–1022.
  16. Witkin, A.P. (1984). Scale-space filtering: A new approach to multi-scale description, in S. Ullman and W. Richards (Eds.), Image Understanding, Ablex, Norwood, NJ.10.1109/ICASSP.1984.1172729
  17. Zhao, Y., Hu, J., Zhang, L. and Liao, T. (2013). Mallat wavelet filter coefficient calculation, 5th International Conference on Computational and Information Sciences, Shiyan, Hubei, China, pp. 963–965.
DOI: https://doi.org/10.1515/amcs-2015-0066 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 927 - 941
Submitted on: Jun 27, 2014
|
Published on: Dec 30, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Waldemar Rakowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.