Have a personal or library account? Click to login
Statistical Testing of Segment Homogeneity in Classification of Piecewise–Regular Objects Cover

Statistical Testing of Segment Homogeneity in Classification of Piecewise–Regular Objects

Open Access
|Dec 2015

References

  1. Asadpour, V., Homayounpour, M.M. and Towhidkhah, F. (2011). Audio-visual speaker identification using dynamic facial movements and utterance phonetic content, Applied Soft Computing11(2): 2083–2093.10.1016/j.asoc.2010.07.007
  2. Benesty, J., Sondhi, M.M. and Huang, Y. (2008). Springer Handbook of Speech Processing, Springer, Berlin.10.1007/978-3-540-49127-9
  3. Borovkov, A.A. (1998). Mathematical Statistics, Gordon and Breach Science Publishers, Amsterdam.
  4. Bottou, L., Fogelman Soulie, F., Blanchet, P. and Lienard, J. (1990). Speaker-independent isolated digit recognition: Multilayer perceptrons vs. dynamic time warping, Neural Networks3(4): 453–465.
  5. Ciresan, D., Meier, U., Masci, J. and Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification, Neural Networks32: 333–338.10.1016/j.neunet.2012.02.02322386783
  6. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA, pp. 886–893.
  7. Gray, R., Buzo, A., Gray, A., Jr. and Matsuyama, Y. (1980). Distortion measures for speech processing, IEEE Transactions on Acoustics, Speech and Signal Processing28(4): 367–376.10.1109/TASSP.1980.1163421
  8. Haykin, S.O. (2008). Neural Networks and Learning Machines, 3rd Edn., Prentice Hall, Harlow.
  9. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. and Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Processing Magazine29(6): 82–97.10.1109/MSP.2012.2205597
  10. Hinton, G.E., Osindero, S. and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets, Neural Computation18(7): 1527–1554.10.1162/neco.2006.18.7.152716764513
  11. Huang, J.-T., Li, J., Yu, D., Deng, L. and Gong, Y. (2013). Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, pp. 7304–7308.
  12. Janakiraman, R., Kumar, J. and Murthy, H. (2010). Robust syllable segmentation and its application to syllable-centric continuous speech recognition, Proceedings of the National Conference on Communications, NCC 2010, Chennai, India, pp. 1–5.
  13. Kullback, S. (1997). Information Theory and Statistics, Dover Publications, New York, NY.
  14. LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning, Nature521(7553): 436–444.10.1038/nature1453926017442
  15. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE86(11): 2278–2324.10.1109/5.726791
  16. Liao, S., Zhu, X., Lei, Z., Zhang, L. and Li, S.Z. (2007). Learning multi-scale block local binary patterns for face recognition, in S.-W. Lee and S.Z. Li (Eds.), Advances in Biometrics, Lecture Notes in Computer Science, Vol. 4642, Springer, Berlin/Heidelberg, pp. 828–837.10.1007/978-3-540-74549-5_87
  17. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision60(2): 91–110.10.1023/B:VISI.0000029664.99615.94
  18. Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A. and Xing, E.P. (2008). Nonextensive entropic kernels, Proceedings of the 25th International Conference on Machine Learning, ICML ’2008, New York, NY, USA, pp. 640–647.
  19. Merialdo, B. (1988). Multilevel decoding for very-large-size-dictionary speech recognition, IBM Journal of Research and Development32(2): 227–237.10.1147/rd.322.0227
  20. Pfau, T. and Ruske, G. (1998). Estimating the speaking rate by vowel detection, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998, Seattle, WA, USA, Vol. 2, pp. 945–948.
  21. Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques, Springer-Verlag, Berlin/Heidelberg.
  22. Sas, J. and Żołnierek, A. (2013). Pipelined language model construction for Polish speech recognition, International Journal of Applied Mathematics and Computer Science23(3): 649–668, DOI: 10.2478/amcs-2013-0049.10.2478/amcs-2013-0049
  23. Savchenko, A.V. (2012). Directed enumeration method in image recognition, Pattern Recognition45(8): 2952–2961.10.1016/j.patcog.2012.02.011
  24. Savchenko, A.V. (2013a). Phonetic words decoding software in the problem of Russian speech recognition, Automation and Remote Control74(7): 1225–1232.10.1134/S000511791307014X
  25. Savchenko, A.V. (2013b). Probabilistic neural network with homogeneity testing in recognition of discrete patterns set, Neural Networks46: 227–241.10.1016/j.neunet.2013.06.003
  26. Savchenko, A.V. and Khokhlova, Y.I. (2014). About neural-network algorithms application in viseme classification problem with face video in audiovisual speech recognition systems, Optical Memory and Neural Networks (Information Optics)23(1): 34–42.10.3103/S1060992X14010068
  27. Specht, D.F. (1990). Probabilistic neural networks, Neural Networks3(1): 109–118.10.1016/0893-6080(90)90049-Q
  28. Świercz, E. (2010). Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution, International Journal of Applied Mathematics and Computer Science20(1): 135–147, DOI: 10.2478/v10006-010-0010-x.10.2478/v10006-010-0010-x
  29. Tan, X., Chen, S., Zhou, Z.-H. and Zhang, F. (2006). Face recognition from a single image per person: A survey, Pattern Recognition39(9): 1725–1745.10.1016/j.patcog.2006.03.013
  30. Theodoridis, S. and Koutroumbas, K. (2008). Pattern Recognition, 4th Edn., Academic Press, Burlington, MA/London.
  31. Zhou, E., Cao, Z. and Yin, Q. (2015). Naive-deep face recognition: Touching the limit of LFW benchmark or not?, CoRRabs/1501.04690.
DOI: https://doi.org/10.1515/amcs-2015-0065 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 915 - 925
Submitted on: Nov 1, 2014
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Andrey V. Savchenko, Natalya S. Belova, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.