Have a personal or library account? Click to login
Nonlinear System Identification with a Real–Coded Genetic Algorithm (RCGA) Cover

Nonlinear System Identification with a Real–Coded Genetic Algorithm (RCGA)

By: Imen Cherif and  Farhat Fnaiech  
Open Access
|Dec 2015

References

  1. Annaswamy, A.S. and Yu, H. (1996). Adaptive neural networks: A new approach to parameter estimation, IEEE Transactions on Neural Networks7(4): 907–918.10.1109/72.50893418263486
  2. Attar, P.J. and Dowell, E.H. (2005). A reduced order system ID approach to the modelling of nonlinear structural behavior in aeroelasticity, Journal of Fluids and Structures21(5–7): 531–542.10.1016/j.jfluidstructs.2005.08.012
  3. Cherif, I., Abid, S., Fnaiech, F. and Favier, G. (2004). Volterra kernels identification using higher order moments for different input signals, IEEE-ISCCSP, Hammamet, Tunisia, pp. 845–848.
  4. Cherif, I., Abid, S. and Fnaiech, F. (2005). Blind identification of quadratic systems under i.i.d. excitation using genetic algorithms, 8th International Symposium on Signal Processing and its Applications ISSPA’2005, Sydney, Australia, pp. 463–466.
  5. Cherif I., Abid S., and Fnaiech, F. (2007). Blind nonlinear system identification under Gaussian and/or i.i.d. excitation using genetic algorithms, IEEE International Conference on Signal Processing and Communication ICSPC 2007, Dubai, UAE, pp. 644–647.
  6. Cherif, I., Abid, S., Fnaiech, F. (2012). Nonlinear blind identification with three dimensional tensor analysis, Mathematical Problems in Engineering2012, Article ID: 284815.10.1155/2012/284815
  7. Glentis, G.O.A., Koukoulas, P. and Kalouptsidis, N. (1999). Efficient algorithms for Volterra system identification, IEEE Transactions on Signal Processing47(11): 3042–3057.10.1109/78.796438
  8. Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science11(4): 977–991.
  9. Herrera, F., Lozano, M., and Verdegay, J.L. (1998). Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis, Artificial Intelligence Review12(4): 265–319.10.1023/A:1006504901164
  10. Koukoulas, P. and Kalouptsidis, N. (1996). On blind identification of quadratic systems, EUSIPCO’96, Trieste, Italy, pp. 1929–1932.
  11. Koukoulas, P. and Kalouptsidis, N. (1997). Third order system identification, International Conference on Acoustic Speech and Signal Processing: ICASSP’97, Munich, Germany, pp. 2405–2408.
  12. Koukoulas, P. and Kalouptsidis, N. (2000). Second order Volterra system identification, IEEE Transactions on Signal Processing48(12): 3574–3577.10.1109/78.887051
  13. Kalouptsidis, N. and Koukoulas, P. (2005). Blind identification of Volterra–Hammerstein systems, IEEE Transactions on Signal Processing53(8): 2777–2787.10.1109/TSP.2005.850357
  14. Mathlouthi H., Abderrahim K., Msahli F. and Gerard F. (2009). Crosscumulants based approaches for the structure identification of Volterra models, International Journal of Automation and Computing6(4): 420–430.10.1007/s11633-009-0420-0
  15. Mendel J.M. (1991). Tutorial on higher order statistics (spectra) in signal processing and system theory: Theoretical results and some applications, Proceedings of the IEEE79(3): 278–305.10.1109/5.75086
  16. Ozertem, U. and Erdogmus, D. (2009). Second-order Volterra system identification with noisy input-output measurements, IEEE Signal Processing Letters16(1): 18–21.10.1109/LSP.2008.2008478
  17. Orjuela, R., Marx, B., Ragot, J. and Maquin D. (2013). Nonlinear system identification using heterogeneous multiple models, International Journal of Applied Mathematics and Computer Science23(1): 103–115, DOI: 10.2478/amcs-2013-0009.10.2478/amcs-2013-0009
  18. Phan, M.Q., Longman, R.W., Lee, S.C. and Lee, J.-W. (2003). System identification from multiple-trial data corrupted by non-repeating periodic disturbances, International Journal of Applied Mathematics and Computer Science13(2): 185–192.
  19. Stathaki, T. and Scohyers, A. (1997). A constrained optimisation approach to the blind estimation of Volterra kernels, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, Munich, Germany, pp. 2373–2376.
  20. Stoica, P. and Soderstorm, T. (1982). Instrumental variable methods for identification of Hammerstein systems, International Journal of Control35(3): 459–476.10.1080/00207178208922632
  21. Tan, H.Z. and Chow, T.W.S. (2000). Blind identification of quadratic nonlinear models using neural networks with higher order cumulants, IEEE Transactions on Industrial Electronics47(3): 687–696.10.1109/41.847909
  22. Tseng, C.H. and Powers, E.J. (1995). Identification of cubic systems using higher order moments of i.i.d. signals, IEEE Transactions on Signal Processing43(7): 1733–1735.
  23. Tsoulkas, V., Koukoulas, P. and Kalouptsidis, N. (2001). Identification of input-output bilinear system using cumulants, IEEE Transactions on Signal Processing49(11): 2753–2761.10.1109/78.960423
  24. Vasconcelos, J.A., Ramirez, J.A., Takahashi, R.H.C. and Saldanha, R.R. (2001). Improvement in genetic algorithms, IEEE Transactions on Magnetics37(5): 3414–3417.10.1109/20.952626
  25. Zhang, S. and Constantinides, A.G. (1992). Lagrange programming neural networks, IEEE Transactions on Circuits and Systems: Analog and Digital Signal Processing39(7): 441–452.10.1109/82.160169
DOI: https://doi.org/10.1515/amcs-2015-0062 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 863 - 875
Submitted on: Feb 20, 2014
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Imen Cherif, Farhat Fnaiech, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.