Have a personal or library account? Click to login
Positivity and Linearization of a Class of Nonlinear Continuous–Time Systems by State Feedbacks Cover

Positivity and Linearization of a Class of Nonlinear Continuous–Time Systems by State Feedbacks

Open Access
|Dec 2015

References

  1. Aguilar, J.L.M., Garcia, R.A. and D’Attellis, C.E. (1995). Exact linearization of nonlinear systems: Trajectory tracking with bounded control and state constrains, 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, Brazil, pp. 620–622.
  2. Brockett, R.W. (1976). Nonlinear systems and differential geometry, Proceedings of the IEEE64(1): 61–71.10.1109/PROC.1976.10067
  3. Charlet, B., Levine, J. and Marino, R. (1991). Sufficient conditions for dynamic state feedback linearization, SIAM Journal on Control and Optimization29(1): 38–57.10.1137/0329002
  4. Daizhan, C., Tzyh-Jong, T. and Isidori, A. (1985). Global external linearization of nonlinear systems via feedback, IEEE Transactions on Automatic Control30(8): 808–811.10.1109/TAC.1985.1104040
  5. Fang, B. and Kelkar, A.G. (2003). Exact linearization of nonlinear systems by time scale transformation, IEEE American Control Conference, Denver, CO, USA, pp. 3555–3560.
  6. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, NewYork, NY.10.1002/9781118033029
  7. Isidori, A. (1989). Nonlinear Control Systems, Springer-Verlag, Berlin.10.1007/978-3-662-02581-9
  8. Jakubczyk, B. (2001). Introduction to geometric nonlinear control: Controllability and Lie bracket, Summer School on Mathematical Control Theory, Triest, Italy.
  9. Jakubczyk, B. and Respondek, W. (1980). On linearization of control systems, Bulletin of the Polish Academy Sciences: Technical Sciences28: 517–521.
  10. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer Verlag, London.10.1007/978-1-4471-0221-2
  11. Kaczorek, T. (2011). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuit and Systems58(6): 1203–1210.10.1109/TCSI.2010.2096111
  12. Kaczorek, T. (2012). Selected Problems of Fractional System Theory, Springer Verlag, Berlin.10.1007/978-3-642-20502-6
  13. Kaczorek, T. (2013). Minimum energy control of fractional positive discrete-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences61(4): 803–807.10.2478/bpasts-2013-0087
  14. Kaczorek, T. (2014a). Minimum energy control of descriptor positive discrete-time systems, COMPEL33(3): 1–14.10.1108/COMPEL-04-2013-0111
  15. Kaczorek, T. (2014b). Necessary and sufficient conditions for minimum energy control of positive discrete-time linear systems with bounded inputs, Bulletin of the Polish Academy of Sciences: Technical Sciences62(1): 85–89.10.2478/bpasts-2014-0010
  16. Kaczorek, T. (2014c). Minimum energy control of fractional positive continuous-time linear systems with bounded inputs, International Journal of Applied Mathematics and Computer Science24(2): 335–340, DOI: 10.2478/amcs-2014-0025.10.2478/amcs-2014-0025
  17. Malesza, W. (2008). Geometry and Equivalence of Linear and Nonlinear Control Systems Invariant on Corner Regions, Ph.D. thesis, Warsaw University of Technology, Warsaw.
  18. Malesza, W. and Respondek, W. (2007). State-linearization of positive nonlinear systems: Applications to Lotka–Volterra controlled dynamics, in F. Lamnabhi-Lagarrigu et al. (Eds.), Taming Heterogeneity and Complexity of Embedded Control, John Wiley, Hoboken, NJ, pp. 451–473.
  19. Marino, R. and Tomei, P. (1995). Nonlinear Control Design— Geometric, Adaptive, Robust, Prentice Hall, London.
  20. Melhem, K., Saad, M. and Abou, S.C. (2006). Linearization by redundancy and stabilization of nonlinear dynamical systems: A state transformation approach, IEEE International Symposium on Industrial Electronics, Montreal, Canada, pp. 61–68.
  21. Taylor, J.H. and Antoniotti, A.J. (1993). Linearization algorithms for computer-aided control engineering, Control Systems Magazine13(2): 58–64.10.1109/37.206986
  22. Wei-Bing, G. and Dang-Nan, W. (1992). On the method of global linearization and motion control of nonlinear mechanical systems, International Conference on Industrial Electronics, Control, Instrumentation and Automation, San Diego, CA, USA, pp. 1476–1481.
DOI: https://doi.org/10.1515/amcs-2015-0059 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 827 - 831
Submitted on: Aug 22, 2014
Accepted on: Mar 10, 2015
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.