Have a personal or library account? Click to login
Observability and Controllability Analysis for Sandwich Systems with Backlash Cover

Observability and Controllability Analysis for Sandwich Systems with Backlash

By: Na Luo,  Yonghong Tan and  Ruili Dong  
Open Access
|Dec 2015

References

  1. Balachandran, K. and Shanmugam, D. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science24(4): 713–722, DOI: 10.2478/amcs-2014-0052.10.2478/amcs-2014-0052
  2. Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York, NY.
  3. Dong, R., Tan, Y., Chen, H. and Xie, Y. (2012). Nonsmooth recursive identification of sandwich systems with backlash-like hysteresis, Journal of Applied Mathematics2012: 1–16, ID 457601.10.1155/2012/457603
  4. Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control22(5): 728–740.10.1109/TAC.1977.1101601
  5. Isidori, A. (1989). Nonlinear Control Systems, Springer, London.10.1007/978-3-662-02581-9
  6. Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematics and Computer Science12(2): 181–195.
  7. Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.
  8. Karthikeyan, S., Balachandran, K. and Murugesan, S. (2015). Controllability of nonlinear stochastic systems with multiple time-varying delays in control, International Journal of Applied Mathematics and Computer Science25(2): 207–215, DOI: 10.1515/amcs-2015-0015.10.1515/amcs-2015-0015
  9. Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control20(1): 170–172.10.1109/TAC.1975.1100870
  10. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  11. Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670–4671.
  12. Klamka, J. (2013a). Constrained controllability of second order dynamical systems with delay, Control and Cybernetics42(1): 111–121.
  13. Klamka, J. (2013b). Controllability of dynamical systems: A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences61(2): 221–229.10.2478/bpasts-2013-0031
  14. Klamka, J., Czornik, A. and Niezabitowski, M. (2013). Stability and controllability of switched systems, Bulletin of the Polish Academy of Sciences: Technical Sciences61(3): 547–554.10.2478/bpasts-2013-0055
  15. Koplon, R. and Sontag, E. (1993). Linear systems with sign observations, SIAM Journal Control and Optimization31(12): 1245–1266.10.1137/0331059
  16. Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization51(1): 161–174.10.1080/02331930211981
  17. Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 370–376.
  18. Nordin, M. and Gutman, P.O. (2002). Controlling mechanical systems with backlash—a survey, Automatica38(4): 1633–1649.10.1016/S0005-1098(02)00047-X
  19. Qi, L. and Sun, J. (1993). A nonsmooth version of Newton’s method, Mathematical Programming58(3): 353–367.10.1007/BF01581275
  20. Rockafellar, R.T. and Wets, R. J.B. (1998). Variational Analysis, Springer, Berlin.10.1007/978-3-642-02431-3
  21. Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization17(1): 139–151.10.1137/0317011
  22. Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory12(3): 371–393.10.1007/BF01776584
  23. van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization20(3): 338–354.10.1137/0320026
  24. Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science22(3): 507–522, DOI: 10.2478/v10006-012-0038-1.10.2478/v10006-012-0038-1
DOI: https://doi.org/10.1515/amcs-2015-0057 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 803 - 814
Submitted on: Jul 24, 2014
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Na Luo, Yonghong Tan, Ruili Dong, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.