Have a personal or library account? Click to login
The Non–Symmetric s–Step Lanczos Algorithm: Derivation of Efficient Recurrences and Synchronization–Reducing Variants of BiCG and QMR Cover

The Non–Symmetric s–Step Lanczos Algorithm: Derivation of Efficient Recurrences and Synchronization–Reducing Variants of BiCG and QMR

Open Access
|Dec 2015

References

  1. Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F. (1997). Efficient management of parallelism in object oriented numerical software libraries, in E. Arge et al. (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, Boston, MA, pp. 163–202.10.1007/978-1-4612-1986-6_8
  2. Bücker, H.M. (2002). Iteratively solving large sparse linear systems on parallel computers, in J. Grotendorst, D. Marx and A. Muramatsu (Eds.), Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, NIC Series, Vol. 10, John Von Neumann Institute for Computing, Jülich, pp. 521–548.
  3. Bücker, H.M. and Sauren, M. (1996). A parallel version of the quasi-minimal residual method based on coupled two-term recurrences, in J. Waśniewski et al. (Eds.), Applied Parallel Computing, Lecture Notes in Computer Science, Vol. 1184, Springer, Berlin, pp. 157–165.10.1007/3-540-62095-8_17
  4. Bücker, H.M. and Sauren, M. (1997). A variant of the biconjugate gradient method suitable for massively parallel computing, in G. Bilardi et al. (Eds.), Solving Irregularly Structured Problems in Parallel, Lecture Notes in Computer Science, Vol. 1253, Springer, Berlin, pp. 72–79.10.1007/3-540-63138-0_7
  5. Bücker, H.M. and Sauren, M. (1999). Reducing global synchronization in the biconjugate gradient method, in T. Yang (Ed.), Parallel Numerical Computations with Applications, Kluwer Academic Publishers, Norwell, MA, pp. 63–76.10.1007/978-1-4615-5205-5_5
  6. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B. and Snir, M. (2009). Toward exascale resilience, International Journal of High Performance Computing Applications23(4): 374–388.10.1177/1094342009347767
  7. Carson, E. and Demmel, J. (2014). A residual replacement strategy for improving the maximum attainable accuracy of s-step Krylov subspace methods, SIAM Journal on Matrix Analysis and Applications35(1): 22–43.10.1137/120893057
  8. Carson, E., Knight, N. and Demmel, J. (2014). Avoiding communication in nonsymmetric Lanczos-based Krylov subspace methods, SIAM Journal on Scientific Computing35(5): S42–S61.10.1137/120881191
  9. Chronopoulos, A.T. (1986). A class of parallel iterative methods implemented on multiprocessors, Technical report UIUCDCS-R-86-1267, Department of Computer Science, University of Illinois, Urbana, IL.
  10. Chronopoulos, A.T. and Gear, C.W. (1989). s-Step iterative methods for symmetric linear systems, Journal of Computational and Applied Mathematics25(2): 153–168.10.1016/0377-0427(89)90045-9
  11. Chronopoulos, A.T. and Swanson, C.D. (1996). Parallel iterative s-step methods for unsymmetric linear systems, Parallel Computing22(5): 623–641.10.1016/0167-8191(96)00022-1
  12. Curfman McInnes, L., Smith, B., Zhang, H. and Mills, R.T. (2014). Hierarchical Krylov and nested Krylov methods for extreme-scale computing, Parallel Computing40(1): 17–31.10.1016/j.parco.2013.10.001
  13. Davis, N.E., Robey, R.W., Ferenbaugh, C.R., Nicholaeff, D. and Trujillo, D.P. (2012). Paradigmatic shifts for exascale supercomputing, Journal of Supercomputing62(2): 1023–1044.10.1007/s11227-012-0789-3
  14. Demmel, J., Heath, M. and van der Vorst, H. (1993). Parallel numerical linear algebra, Acta Numerica2(1): 111–197.10.1017/S096249290000235X
  15. Duff, I.S. (2012). European exascale software initiative: Numerical libraries, solvers and algorithms, in D. Hutchison et al. (Eds.), Euro-Par 2011: Parallel Processing Workshops, Lecture Notes in Computer Science, Vol. 7155, Springer, Berlin, pp. 295–304.10.1007/978-3-642-29737-3_34
  16. Duff, I.S. and van der Vorst, H.A. (1999). Developments and trends in the parallel solution of linear systems, Parallel Computing25(13–14): 1931–1970.10.1016/S0167-8191(99)00077-0
  17. Feuerriegel, S. and Bücker, H.M. (2013a). A normalization scheme for the non-symmetric s-step Lanczos algorithm, in J. Kolodziej et al. (Eds.), ICA3PP, Part II, Lecture Notes in Computer Science, Vol. 8286, Springer, Berlin, pp. 30–39.
  18. Feuerriegel, S. and Bücker, H.M. (2013b). Synchronization-reducing variants of the biconjugate gradient and the quasi-minimal residual methods, in J. Kolodziej et al. (Eds.), ICA3PP, Part I, Lecture Notes in Computer Science, Vol. 8285, Springer, Berlin, pp. 226–235.
  19. Fischer, B. and Freund, R. (1994). An inner product-free conjugate gradient-like algorithm for Hermitian positive definite systems, in J. Brown et al. (Eds.), Cornelius Lanczos International Centenary Conference, SIAM, Philadelphia, PA, pp. 288–290.
  20. Fletcher, R. (1976). Conjugate gradient methods for indefinite systems, in G. Watson (Ed.), Numerical Analysis, Lecture Notes in Computer Science, Vol. 506, Springer, Berlin, pp. 73–89.10.1007/BFb0080116
  21. Freund, R. and Nachtigal, N. (1991). QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathematik60(1): 315–339.10.1007/BF01385726
  22. Freund, R.W. and Hochbruck, M. (1991). A biconjugate gradient type algorithm on massively parallel architectures, in R. Vichnevetsky and J.J.H. Miller (Eds.), IMACS’91, Criterion Press, Dublin, pp. 720–721.
  23. Freund, R.W. and Hochbruck, M. (1992). A biconjugate gradient-type algorithm for the iterative solution of non-Hermitian linear systems on massively parallel architectures, in C. Brezinski and U. Kulisch (Eds.), IMACS’91, North Holland, Amsterdam, pp. 169–178.
  24. Freund, R.W. and Nachtigal, N.M. (1994). An implementation of the QMR method based on coupled two-term recurrences, SIAM Journal on Scientific Computing15(2): 313.10.1137/0915022
  25. Ghysels, P., Ashby, T.J., Meerbergen, K. and Vanroose, W. (2013). Hiding global communication latency in the GMRES algorithm on massively parallel machines, SIAM Journal on Scientific Computing35(1): C48–C71.10.1137/12086563X
  26. Ghysels, P. and Vanroose, W. (2014). Hiding global synchronization latency in the preconditioned conjugate gradient algorithm, Parallel Computing40(7): 224–238.10.1016/j.parco.2013.06.001
  27. Gustafsson, M., Demmel, J. and Holmgren, S. (2012a). Numerical evaluation of the communication-avoiding Lanczos algorithm, Technical Report 2012-001, Department of Information Technology, Uppsala University, Uppsala.
  28. Gustafsson, M., Kormann, K. and Holmgren, S. (2012b). Communication-efficient algorithms for numerical quantum dynamics, in K. Jónasson (Ed.), Applied Parallel and Scientific Computing, Lecture Notes in Computer Science, Vol. 7134, Springer, Berlin, pp. 368–378.
  29. Gutknecht, M.H. (1997). Lanczos-type solvers for nonsymmetric linear systems of equations, Acta Numerica6(1): 271–397.10.1017/S0962492900002737
  30. Hernandez, V., Roman, J.E. and Vidal, V. (2005). SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Transactions on Mathematical Software31(3): 351–362.10.1145/1089014.1089019
  31. Hoemmen, M.F. (2010). Communication-avoiding Krylov Subspace Methods, Ph.D. thesis, EECS Department, University of California, Berkeley, CA.
  32. Kandalla, K., Yang, U., Keasler, J., Kolev, T., Moody, A., Subramoni, H., Tomko, K., Vienne, J., De Supinski, B. and Panda, D. (2012). Designing non-blocking allreduce with collective offload on InfiniBand clusters: A case study with conjugate gradient solvers, Proceedings of the 2012 IEEE 26th International Parallel Distributed Processing Symposium (IPDPS), Shanghai, China, pp. 1156–1167.
  33. Kim, S.K. (2010). Efficient biorthogonal Lanczos algorithm on message passing parallel computer, in C.H. Hsu and V. Malyshkin (Eds.), MTPP 2010, Lecture Notes in Computer Science, Vol. 6083, Springer, Berlin, pp. 293–299.10.1007/978-3-642-14822-4_33
  34. Kim, S.K. and Chronopoulos, A. (1991). A class of Lanczos-like algorithms implemented on parallel computers, Parallel Computing17(6–7): 763–778.10.1016/S0167-8191(05)80065-1
  35. Kim, S.K. and Chronopoulos, A.T. (1992). An efficient nonsymmetric Lanczos method on parallel vector computers, Journal of Computational and Applied Mathematics42(3): 357–374.10.1016/0377-0427(92)90085-C
  36. Kim, S.K. and Kim, T.H. (2005). A study on the efficient parallel block Lanczos method, in J. Zhang, J.-H. He and Y. Fu (Eds.), Computational and Information Science, Lecture Notes in Computer Science, Vol. 3314, Springer, Berlin/Heidelberg, pp. 231–237.
  37. Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards45(4): 255–282.10.6028/jres.045.026
  38. Meurant, G. (1986). The conjugate gradient method on supercomputers, Supercomputer13: 9–17.
  39. Mohiyuddin, M., Hoemmen, M., Demmel, J. and Yelick, K. (2009). Minimizing communication in sparse matrix solvers, Conference on High Performance Computing Networking, Storage and Analysis, Portland, OR, USA, pp. 36:1–36:12.
  40. Saad, Y. (1989). Krylov subspace methods on supercomputers, SIAM Journal on Scientific and Statistical Computing10(6): 1200–1232.10.1137/0910073
  41. Sauren, M. and Bücker, H.M. (1998). On deriving the quasi-minimal residual method, SIAM Review40(4): 922–926.10.1137/S0036144596319368
  42. Shalf, J., Dosanjh, S. and Morrison, J. (2011). Exascale computing technology challenges, in D. Hutchison et al. (Eds.), High Performance Computing for Computational Science, VECPAR 2010, Lecture Notes in Computer Science, Vol. 6449, Springer, Berlin, pp. 1–25.10.1007/978-3-642-19328-6_1
  43. van der Vorst, H. (1990). Iterative methods for the solution of large systems of equations on supercomputers, Advances in Water Resources13(3): 137–146.10.1016/0309-1708(90)90005-O
  44. van der Vorst, H.A. and Ye, Q. (2000). Residual replacement strategies for Krylov subspace iterative methods for the convergence of true residuals, SIAM Journal on Scientific Computing22(3): 835–852.10.1137/S1064827599353865
  45. Van Rosendale, J. (1983). Minimizing inner product data dependencies in conjugate gradient iteration, NASA Contractor Report NASA-CR-172178, NASA Langley Research Center, Hampton, VA.
  46. Zhu, S.-X., Gu, T.-X. and Liu, X.-P. (2014). Minimizing synchronizations in sparse iterative solvers for distributed supercomputers, Computers & Mathematics with Applications67(1): 199–209.10.1016/j.camwa.2013.11.008
  47. Zuo, X., Gu, T.-X. and Mo, Z. (2010). An improved GPBi-CG algorithm suitable for distributed parallel computing, Applied Mathematics and Computation215(12): 4101–4109.10.1016/j.amc.2009.11.044
DOI: https://doi.org/10.1515/amcs-2015-0055 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 769 - 785
Submitted on: Apr 15, 2014
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Stefan Feuerriegel, H. Martin Bücker, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.