Have a personal or library account? Click to login
Decentralized Job Scheduling in the Cloud Based on a Spatially Generalized Prisoner’s Dilemma Game Cover

Decentralized Job Scheduling in the Cloud Based on a Spatially Generalized Prisoner’s Dilemma Game

Open Access
|Dec 2015

References

  1. An, B., Miao, C. and Shen, Z. (2007). Market based resource allocation with incomplete information, in M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI’07, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 1193–1198.
  2. Brandic, I., Pllana, S. and Benkner, S. (2006). An approach for the high-level specification of QoS-aware grid workflows considering location affinity, Workshop on Workflows in Support of Large-Scale Science, WORKS’06, Paris, France, Vol. 14, pp. 231–250.
  3. Christodoulou, G., Koutsoupias, E. and Vidali, A. (2007). A lower bound for scheduling mechanisms, in H. Gabow (Ed.), Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’07, Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 1163–1170.
  4. Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II, in M. Schoenauer et al. (Eds.), Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, PPSN VI, Springer-Verlag, London, pp. 849–858.
  5. Even-Dar, E., Kesselman, A. and Mansour, Y. (2007). Convergence time to Nash equilibrium in load balancing, ACM Transactions on Algorithms3(3): 111–132.10.1145/1273340.1273348
  6. Hwang, S. and Kesselman, C. (2003). A flexible framework for fault tolerance in the grid, Journal of Grid Computing1(3): 251–272.10.1023/B:GRID.0000035187.54694.75
  7. Katsumata, Y. and Ishida, Y. (2008). On a membrane formation in a spatio-temporally generalized prisoner’s dilemma, in H. Umeo et al. (Eds.), Proceedings of the 8th International Conference on Cellular Automata for Research and Industry, ACRI’08, Springer-Verlag, Berlin/Heidelberg, pp. 60–66.10.1007/978-3-540-79992-4_8
  8. Khan, S.U. and Ahmad, I. (2006). Non-cooperative, semi-cooperative, and cooperative games-based grid resource allocation, 20th International Parallel and Distributed Processing Symposium, IPDPS 2006, Rhodes, Greece.10.1109/IPDPS.2006.1639358
  9. Kolodziej, J. and Xhafa, F. (2011). Meeting security and user behavior requirements in grid scheduling, Simulation Modelling Practice and Theory19(1): 213–226.10.1016/j.simpat.2010.06.007
  10. Lee, Y. and Zomaya, A. (2012). Energy efficient utilization of resources in cloud computing systems, The Journal of Supercomputing60(2): 268–280.10.1007/s11227-010-0421-3
  11. Li, Z.-J., Cheng, C.-T. and Huang, F.-X. (2009). Utility-driven solution for optimal resource allocation in computational grid, Computer Languages, Systems & Structures35(4): 406–421.10.1016/j.cl.2008.08.001
  12. Lin, C., Varadharajan, V., Wang, Y. and Pruthi, V. (2004). Enhancing grid security with trust management, in L.-J. Zhang, J. Zhang and H. Cai (Eds.), Proceedings of the 2004 IEEE International Conference on Services Computing, SCC’04, IEEE Computer Society, Washington, DC, pp. 303–310.
  13. Londoño, J., Bestavros, A. and Teng, S.-H. (2009). Collocation games and their application to distributed resource management, Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud’09, San Diego, CA, USA.
  14. Nowak, M.A. and May, R.M. (1992). Evolutionary games and spatial chaos, Nature359: 826.10.1038/359826a0
  15. Palmieri, F., Buonanno, L., Venticinque, S., Aversa, R. and Di Martino, B. (2013). A distributed scheduling framework based on selfish autonomous agents for federated cloud environments, Future Generation Computer Systems29(6): 1461–1472.10.1016/j.future.2013.01.012
  16. Perc, M. and Szolnoki, A. (2008). Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game, Physical Review E77: 011904.10.1103/PhysRevE.77.01190418351873
  17. Song, S., Hwang, K. and Kwok, Y.-K. (2006). Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling, IEEE Transactions on Computers55(6): 703–719.10.1109/TC.2006.89
  18. Sookhak, M., Akhunzada, A., Talebian, H., Gani, A., Khan, S., Buyya, R. and Zomaya, A.Y. (2015). Remote data auditing in cloud computing environments: A survey, taxonomy, and open issues, ACM Computing Surveys47(4), Article no. 65.
  19. Switalski, P. and Seredynski, F. (2011). An efficient evolutionary scheduling algorithm for parallel job model in grid environment, in V. Malyshkin (Ed.), Proceedings of the 11th International Conference on Parallel Computing Technologies, PaCT’11, Springer-Verlag, Berlin/Heidelberg, pp. 347–357.10.1007/978-3-642-23178-0_30
  20. Szabó, G., Vukov, J. and Szolnoki, A. (2005). Phase diagrams for Prisoner’s Dilemma game on two-dimensional lattices, Physical Review E72(4).10.1103/PhysRevE.72.04710716383580
  21. Tchernykh, A., Schwiegelshohn, U., Yahyapour, R. and Kuzjurin, N. (2010). On-line hierarchical job scheduling on grids with admissible allocation, Journal of Scheduling13(5): 545–552.10.1007/s10951-010-0169-x
  22. Tziritas, N., Xu, C.-Z., Loukopoulos, T., Khan, S. and Yu, Z. (2013). Application-aware workload consolidation to minimize both energy consumption and network load in cloud environments, 42nd International Conference on Parallel Processing (ICPP), Lyon, France, pp. 449–457.
  23. Wu, C.-C. and Sun, R.-Y. (2010). An integrated security-aware job scheduling strategy for large-scale computational grids, Future Generation Computer Systems26(2): 198–206.10.1016/j.future.2009.08.004
DOI: https://doi.org/10.1515/amcs-2015-0053 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 737 - 751
Submitted on: Apr 11, 2014
Published on: Dec 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Jakub Gąsior, Franciszek Seredyński, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.