Have a personal or library account? Click to login
Building the library of RNA 3D nucleotide conformations using the clustering approach Cover

Building the library of RNA 3D nucleotide conformations using the clustering approach

Open Access
|Sep 2015

References

  1. Adamiak, R., Blazewicz, J., Formanowicz, P., Gdaniec, Z., Kasprzak, M., Popenda, M. and Szachniuk, M. (2004). An algorithm for an automatic NOE pathways analysis in 2D NMR spectra of RNA duplexes, Journal of Computational Biology 42(11): 163-180.10.1089/106652704773416948
  2. Antczak, M., Zok, T., Popenda, M., Lukasiak, P., Adamiak, R., Blazewicz, J. and Szachniuk, M. (2014). RNApdbee-a webserver to derive secondary structures from PDB files of knotted and unknotted RNAs, Nucleic Acids Research 42(W1): W368-W372.10.1093/nar/gku330
  3. Berman, H., Olson, W., Beveridge, D., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S., Srinivasan, A. and Schneider, B. (1992). The Nucleic Acid Database: A comprehensive relational database of three-dimensional structures of nucleic acids, Biophysical Journal 3(63): 751-759.10.1016/S0006-3495(92)81649-1
  4. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.N. and Bourne, P. E. (2000). The Protein Data Bank, Nucleic Acids Research 28(1): 235-42.
  5. Blazewicz, J., Szachniuk, M. and Wojtowicz, A. (2004). Evolutionary approach to NOE paths assignment in RNA structure elucidation, Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, La Jolla, CA, USA, Vol. 1, pp. 206-213.
  6. Cottrell, M., Hammer, B., Hasenfuss, A. and Villmann, T. (2006). Batch and median neural gas, Neural Networks 19(6): 762-771.10.1016/j.neunet.2006.05.018
  7. Dunbrack, Jr, R. (2002). Rotamer libraries in the 21st century, Current Opinion in Structural Biology 12(4): 431-440.10.1016/S0959-440X(02)00344-5
  8. Dunbrack, Jr, R. and Karplus, M. (1993). Backbone-dependent rotamer library for proteins. Application to side-chain prediction, Journal of Molecular Biology 230(2): 543-574.
  9. Frey, B. and Dueck, D. (2007). Clustering by passing messages between data points, Science 315(5814): 972-976.10.1126/science.113680017218491
  10. Hamelryck, T., Kent, J. and Krogh, A. (2006). Sampling realistic protein conformations using local structural bias, PLoS Computational Biology 2(9): e131.10.1371/journal.pcbi.0020131157037017002495
  11. Humphris-Narayanan, E. and Pyle, A. (2012). Discrete RNA libraries from pseudo-torsional space, Journal of Molecular Biology 421(1): 6-26.10.1016/j.jmb.2012.03.002342262222425640
  12. Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis, 1st Edn., Wiley-Interscience, New York, NY.
  13. Leontis, N. and Westhof, E. (2012). RNA 3D Structure Analysis and Prediction, Springer, Berlin/New York, NY.10.1007/978-3-642-25740-7
  14. Lloyd, S. (1982). Least squares quantization in PCM, IEEE Transactions on Information Theory 28(2): 129-137.10.1109/TIT.1982.1056489
  15. Lukasiak, P., Antczak, M., Ratajczak, T., Bujnicki, J.M., Szachniuk, M., Popenda, M., Adamiak, R. and Blazewicz, J. (2013). RNAlyzer-novel approach for quality analysis of RNA structural models, Nucleic Acids Research 12(41): 5978-5990.10.1093/nar/gkt318369549923620294
  16. Lukasiak, P., Blazewicz, J. and Milostan, M. (2010). Some operations research methods for analyzing protein sequences and structures, Annals of Operations Research 175(1): 9-35.10.1007/s10479-009-0652-y
  17. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations, in L. LeCam and J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics, and Probability, University of California Press, Berkeley, CA, pp. 281-297.
  18. Martinetz, T. and Shulten, K. (1991). A ”neural-gas” network learns topologies, in T. Kohonen et al. (Eds.), Artificial Neural Networks, Elsevier, Amsterdam, pp. 397-402.
  19. Parisien, M. and Major, F. (2012). Determining RNA three-dimensional structures using low-resolution data, Journal of Structural Biology 179(3): 252-260.10.1016/j.jsb.2011.12.024342347422387042
  20. Pekalska, E. and Duin, R. (2005). The Dissimilarity Representation for Pattern Recognition: Foundations and Applications (Machine Perception and Artificial Intelligence), World Scientific Publishing Co., Inc., River Edge, NJ.
  21. Popenda, L., Bielecki, L., Gdaniec, Z. and Adamiak, R.W. (2009). Structure and dynamics of adenosine bulged RNA duplex reveals formation of the dinucleotide platform in the C:G-A triple, Arkivoc 3: 130-144.10.3998/ark.5550190.0010.311
  22. Popenda, M., Blazewicz, M., Szachniuk, M. and Adamiak, R. (2008). RNA FRABASE version 1.0: An engine with a database to search for the three-dimensional fragments within RNA structures, Nucleic Acids Research 36(1): D386-D391.
  23. Puszy´nski, K., Jaksik, R. and Świerniak, A. (2012). Regulation of p53 by siRNA in radiation treated cells: Simulation studies, International Journal of Applied Mathematics and Computer Science 22(4): 1011-1018, DOI: 10.2478/v10006-012-0075-9.10.2478/v10006-012-0075-9
  24. Sabo, K. (2014). Center-based l1-clustering method, International Journal of Applied Mathematics and Computer Science 24(1): 151-163, DOI: 10.2478/amcs-2014-0012.10.2478/amcs-2014-0012
  25. Steinhaus, H. (1956). Sur la division des corps matériels en parties, Bulletin de l’Academie Polonaise des Sciences IV(12): 801-804.
  26. Szachniuk, M., Malaczynski, M., Pesch, E., Burke, E. and Blazewicz, J. (2013). MLP accompanied beam search for the resonance assignment problem, Journal of Heuristics 3(19): 443-464.10.1007/s10732-013-9220-3
  27. Villmann, T. (2005). Neural Maps and Learning Vector Quantization for Data Mining-Theory and Applications, Habilitation thesis, University of Leipzig, Leipzig.
  28. Villmann, T., Geweniger, T., Kästner, M. and Lange, M. (2012). Fuzzy neural gas for unsupervised vector quantization, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 7267, Springer, Berlin/Heidelberg, pp. 350-358.10.1007/978-3-642-29347-4_41
  29. Villmann, T. and Haase, S. (2011). Divergence based vector quantization, Neural Computation 23(5): 1343-1392.10.1162/NECO_a_0011021299418
  30. Volkovich, Z., Barzily, Z. and Morozensky, L. (2008). A statistical model of cluster stability, Pattern Recognition 41(7): 2174-2188.10.1016/j.patcog.2008.01.008
  31. Weber, G.-W., Defterli, O., Gök, S.Z.A. and Kropat, E. (2011). Modeling, inference and optimization of regulatory networks based on time series data, European Journal of Operational Research 211(1): 1-14.10.1016/j.ejor.2010.06.038
  32. Zok, T., Popenda, M. and Szachniuk, M. (2014). MCQ4Structures to compute similarity of molecule structures, Central European Journal of Operations Research 22(3): 457-473. 10.1007/s10100-013-0296-5
DOI: https://doi.org/10.1515/amcs-2015-0050 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 689 - 700
Submitted on: Nov 26, 2014
|
Published on: Sep 30, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Tomasz Zok, Maciej Antczak, Martin Riedel, David Nebel, Thomas Villmann, Piotr Lukasiak, Jacek Blazewicz, Marta Szachniuk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.