Have a personal or library account? Click to login
An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults An Cover

An H∞ sliding mode observer for Takagi–Sugeno nonlinear systems with simultaneous actuator and sensor faults An

Open Access
|Sep 2015

References

  1. Akhenak, A., Chadli, M. and Ragot, J. (2007). Design of a sliding mode fuzzy observer for uncertain Takagi-Sugeno fuzzy model: Application to automatic steering of vehicles, International Journal Vehicle Autonomous Systems 5(3-4): 288-305.10.1504/IJVAS.2007.016405
  2. Akhenak, A., Chadli, M., Ragot, J. and Maquin, D. (2008). Fault detection and isolation using sliding mode observer for uncertain Takagi-Sugeno fuzzy model, 16th Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 286-291.
  3. Alwi, H., Edwards, C. and Tan, C.P. (2009). Sliding mode estimation schemes for incipient sensor faults, Automatica 45(7): 1679-1685.10.1016/j.automatica.2009.02.031
  4. Asemani, M.H. and Majd, V.J. (2013). A robust H∞ observer-based controller design for uncertain T-S fuzzy systems with unknown premise variables via LMI, Fuzzy Sets and Systems 212(1): 21-40, DOI: 10.1016/j.fss.2012.07.008.10.1016/j.fss.2012.07.008
  5. Bouattour, M., Chadli, M., Chaabane, M. and Hajjaji, A. (2011). Design of robust fault detection observer for Takagi-Sugeno models using the descriptor approach, International Journal of Control, Automation, and Systems 9(5): 973-979.10.1007/s12555-011-0519-2
  6. Dhahri, S., Sellami, A. and Benhmida, F. (2012). Robust H∞ sliding mode observer design for fault estimation in a class of uncertain nonlinear systems with LMI optimization approach, International Journal of Control, Automation, and Systems 10(5): 1032-1041.10.1007/s12555-012-0521-3
  7. Edwards, C., Spurgeon, S.K. and Patton, R.J. (2000). Sliding mode observers for fault detection and isolation, Automatica 36(4): 541-553.10.1016/S0005-1098(99)00177-6
  8. Gao, Z., Jiang, B., Shi, P. and Xu, Y. (2010). Fault accommodation for near space vehicle attitude dynamics via T-S fuzzy models, International Journal of Innovative Computing, Information and Control 6(11): 4843-4856.
  9. Ghorbel, H., Souissi, M., Chaabane, M. and Hajjaji, A. (2012). Observer design for fault diagnosis for the Takagi-Sugeno model with unmeasurable premise variables, 20th Mediterranean Conference on Control and Automation, Barcelona, Spain, pp. 303-308.
  10. Hamdi, H., Rodrigues, M., Mechmeche, C. and Belhadjbraiek, N. (2012). Robust fault detection and estimation for descriptor systems based on multi-models concept, International Journal of Control, Automation, and Systems 10(6): 1260-1266.10.1007/s12555-012-0622-z
  11. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2009a). Simultaneous state and unknown inputs estimation with PI and PMI observers for Takagi-Sugeno model with unmeasurable premise variables, 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, pp. 353-358.10.1109/MED.2009.5164566
  12. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2009b).
  13. State estimation of nonlinear systems using multiple model approach, American Control Conference, ACC, St. Louis, MO, USA, DOI: 10.1109/ACC.2009.5160393.10.1109/ACC.2009.5160393
  14. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2010). State estimation of Takagi-Sugeno systems with unmeasurable premise variables, IET, Control Theory and Applications 4(5): 897-908.10.1049/iet-cta.2009.0054
  15. Ichalal, D., Marx, B., Ragot, J. and Maquin, D. (2012).
  16. New fault tolerant control strategies for nonlinear Takagi-Sugeno systems, International Journal of Applied Mathematics and Computer Science 22(1): 197-210, DOI: 10.2478/v10006-012-0015-8.10.2478/v10006-012-0015-8
  17. Mechmeche, C., Hamdi, H., Rodrigues, M. and Braiek, N.B. (2012). State and unknown inputs estimations for multi-models descriptor systems, International Journal of Robust and Nonlinear Control 2(3): 86-93.10.5923/j.ajcam.20120203.04
  18. Ng, K.Y., Tan, C.P., Edwards, C. and Kuang, Y.C. (2007).
  19. New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers, International Journal of Robust and Nonlinear Control 17(14): 1294-1319.10.1002/rnc.1170
  20. Raoufi, R., Marquez, H.J. and Zinober, A.S.I. (2010).
  21. H∞ sliding mode observers for uncertain nonlinear Lipschitz systems with fault estimation synthesis, International Journal of Robust and Nonlinear Control 20(16): 1785-1801.10.1002/rnc.1545
  22. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132.10.1109/TSMC.1985.6313399
  23. Tan, C.P. and Edwards, C. (2002). Sliding mode observers for detection and reconstruction of sensor faults, Automatica 38(10): 1815-1821.10.1016/S0005-1098(02)00098-5
  24. Tan, C.P. and Edwards, C. (2003a). Sliding mode observers for reconstruction of simultaneous actuator and sensor faults, 42nd IEEE Conference on Decision Control, Maui, HI, USA, pp. 7803-7924.
  25. Tan, C.P. and Edwards, C. (2003b). Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust Nonlinear Control 13(5): 443-463, DOI: 10.1002/rnc.723.10.1002/rnc.723
  26. Xing-Gang, Y. and Edwards, C. (2007a). Nonlinear robust fault reconstruction and estimation using a sliding mode observer, Automatica 43(9) : 1605-1614.10.1016/j.automatica.2007.02.008
  27. Xing-Gang, Y. and Edwards, C. (2007b). Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer, International Journal of Adaptive Control and Signal Processing 21(8-9): 657-673.10.1002/acs.967
  28. Xu, D., Jiang, B. and Shi, P. (2012). Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model, International Journal of Applied Mathematics and Computer Science 22(1): 183-196, DOI: 10.2478/v10006-012-0014-9.10.2478/v10006-012-0014-9
  29. Zhao, Y., Lam, J. and Gao, H. (2009). Fault detection for fuzzy systems with intermittent measurements, IEEE Transactions on Fuzzy Systems 17(2): 398-410. 10.1109/TFUZZ.2009.2014860
DOI: https://doi.org/10.1515/amcs-2015-0041 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 547 - 559
Submitted on: May 29, 2014
Published on: Sep 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ali Ben Brahim, Slim Dhahri, Fayçal Ben Hmida, Anis Sellami, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.