Have a personal or library account? Click to login
An agent-oriented hierarchic strategy for solving inverse problems Cover

References

  1. Alvarez-Aramberri, J., Pardo, D. and Barucq, H. (2013). Inversion of magnetotelluric measurements using multigoal oriented hp-adaptivity, Procedia Computer Science 18: 1564-1573.10.1016/j.procs.2013.05.324
  2. Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865-886, DOI: 10.2478/amcs-2014-0064.10.2478/amcs-2014-0064
  3. Beasley, D., Bull, D.R. and Martin, R.R. (1993). A sequential niche technique for multimodal function optimization, Evolutionary Computation 1(2): 101-125.10.1162/evco.1993.1.2.101
  4. Berenger, J.-P. (1994). A perfectly matched layer for the absortion of electromagnetic waves, Journal of Computational Physics 114(2): 185-200.10.1006/jcph.1994.1159
  5. Byrski, A., Schaefer, R., Smołka, M. and Cotta, C. (2013). Asymptotic guarantee of success for multi-agent memetic systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(1): 257-278.10.2478/bpasts-2013-0025
  6. Cetnarowicz, K., Kisiel-Dorohinicki, M. and Nawarecki, E. (1996). The application of evolution process in multi-agent world (MAW) to the prediction system, in M. Tokoro (Ed.), Proceedings of the 2nd International Conference on Multiagent Systems (ICMAS-96), Menlo Park, CA, USA, pp. 26-32.
  7. Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. 1: One and Two Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC, Boca Raton, FL.10.1201/9781420011685
  8. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W. and Zdunek, A. (2007). Computing with hp-Adaptive Finite Elements, Vol. 2. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/CRC, Boca Raton, FL.10.1201/9781420011692
  9. Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining KDD-96, Portland, OR, USA, pp. 226-231.
  10. FIPA (2002). Foundation for Intelligent Physical Agents (FIPA) Specifications, www.fipa.org.
  11. Gajda-Zagórska, E., Schaefer, R., Smołka, M., Paszyński, M. and Pardo, D. (2015). A hybrid method for inversion of 3D DC resistivity logging measurements, Natural Computing 14(3): 355-374. DOI: 10.1007/s11047-014-9440-y.10.1007/s11047-014-9440-y454171626300711
  12. Grochowski, M., Smołka, M. and Schaefer, R. (2006). Architectural principles and scheduling strategies for computing agent systems, Fundamenta Informaticae 71(1): 15-26.
  13. Jojczyk, P. and Schaefer, R. (2009). Global impact balancing in the hierarchic genetic search, Computing and Informatics 28(2): 181-193.
  14. Neri, F., Cotta, C. and Moscato, P. (Eds.) (2012). Handbook of Memetic Algorithms, Studies in Computational Intelligence, Vol. 379, Springer, Heidelberg.
  15. Obuchowicz, A. (1997). The evolutionary search with soft selection and deterioration of the objective function, Proceedings of the 6th International Conference on Intelligent Information Systems IIS’97, Zakopane, Poland, pp. 288-295.
  16. Pardo, D., Demkowicz, L., Torres-Verdín, C. and Tabarovsky, L. (2006). A goal-oriented hp-adaptive finite element method with electromagnetic applications, Part I: Electrostatics, International Journal for Numerical Methods in Engineering 65(8): 1269-1309.10.1002/nme.1488
  17. Schaefer, R. and Kołodziej, J. (2003). Genetic search reinforced by the population hierarchy, in K.A. De Jong, R. Poli and J. Rowe (Eds.), Foundations of Genetic Algorithms 7, Morgan Kaufman, San Francisco, CA, pp. 383-399.
  18. Smołka, M., Gajda-Zagórska, E., Schaefer, R., Paszyński, M. and Pardo, D. (2015). A hybrid method for inversion of 3D AC logging measurements, Applied Soft Computing 36: 442-456.10.1016/j.asoc.2015.06.055
  19. Smołka, M. and Schaefer, R. (2014). A memetic framework for solving difficult inverse problems, in A.I. Esparcia-Alcázar and A.M. Mora (Eds.), EvoApplications 2014, Lecture Notes in Computer Science, Vol. 8602, Springer, Berlin/Heidelberg, pp. 138-149.10.1007/978-3-662-45523-4_12
  20. Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins, Geophysics 37(1): 98-141.10.1190/1.1440255
  21. Wierzba, B., Semczuk, A., Kołodziej, J. and Schaefer, R. (2003). Hierarchical genetic strategy with real number encoding, Proceedings of the 6th Conference on Evolutionary Algorithms and Global Optimization, Łagów, Poland, pp. 231-237.
  22. Wolny, A. and Schaefer, R. (2011). Improving population-based algorithms with fitness deterioration, Journal of Telecommunications and Information Technology 4: 31-44.
DOI: https://doi.org/10.1515/amcs-2015-0036 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 483 - 498
Submitted on: Sep 5, 2014
Published on: Sep 30, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Maciej Smołka, Robert Schaefer, Maciej Paszyński, David Pardo, Julen Álvarez-Aramberri, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.