Have a personal or library account? Click to login
Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials Cover

Using symbolic computation in the characterization of frictional instabilities involving orthotropic materials

Open Access
|Jun 2015

References

  1. Adams, G. (1995). Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction, ASME, Journal of Applied Mechanics 62(4): 867-872.10.1115/1.2896013
  2. Agwa, M. and Pinto da Costa, A. (2008). Instability of frictional contact states in infinite layers, European Journal of Mechanics, A: Solids 27(3): 487-503.10.1016/j.euromechsol.2007.09.006
  3. Agwa, M. and Pinto da Costa, A. (2011). Surface instabilities in linear orthotropic half-spaces with a frictional interface, ASME, Journal of Applied Mechanics 78(4), Paper 041002.10.1115/1.4003744
  4. Batoz, J.-L. and Dhatt, G. (1990). Modélization des Structures par Eléments Finis. Vol. 1: solides élastiques, Herme`s, Paris.
  5. Ibrahim, R. (1994). Friction-induced vibration, chatter, squeal, and chaos, Part I:Mechanics of contact and friction, Part II: Dynamics and modeling, ASME, Applied Mechanics Reviews 47(7): 209-253.10.1115/1.3111080
  6. Maple (2013). Maplesoft software company, http://www.maplesoft.com/.
  7. Martins, J., Faria, L. and Guimarã, J. (1992). Dynamic surface solutions in linear elasticity with frictional boundary conditions, in R. Ibrahim and A.A. Soom (Eds.), Friction- Induced Vibration, Chatter, Squeal and Chaos, ASME, New York, NY, pp. 33-39.
  8. Martins, J., Guimarães, J. and Faria, L. (1995). Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions, ASME, Journal of Vibration and Acoustics 117(4): 445-451.10.1115/1.2874477
  9. Martins, J. and Raous, M. (Eds.) (2002). Friction and Instabilities, Springer, Vienna.10.1007/978-3-7091-2534-2
  10. Pinto da Costa, A. and Agwa, M. (2009). Frictional instabilities in orthotropic hollow cylinders, Computers and Structures 87(21-22): 1275-1286.10.1016/j.compstruc.2009.08.007
  11. Rand, O. and Rovenski, V. (2005). Analytical Methods in Anisotropic Elasticity with Symbolic Computational Tools, Birkhauser, Basel.
DOI: https://doi.org/10.1515/amcs-2015-0020 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 259 - 267
Submitted on: Oct 11, 2013
Published on: Jun 25, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Mohamed A. Agwa, António Pinto Da Costa, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.