Have a personal or library account? Click to login
A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams Cover

A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams

Open Access
|Jun 2015

References

  1. Ahmadian, H., Mottershead, J.E. and Friswell, M.I. (2001). Boundary conditions identification by solving characteristic equations, Journal of Sound and Vibration 247(5): 755-763.10.1006/jsvi.2001.3708
  2. Albarracín, C., Zannier, L. and Grossi, R. (2004). Some observations in the dynamics of beams with intermediate supports, Journal of Sound and Vibration 271(1-2): 475-480.10.1016/S0022-460X(03)00631-X
  3. Auciello, N. (1996). Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotary inertia and eccentricity, Journal of Sound and Vibration 194(1): 25-34.10.1006/jsvi.1996.0341
  4. Babu, B. and Jehan, M. (2003). Differential evolution for multi-objective optimization, Proceedings of the 2003 Congress on Evolutionary Computation, CEC 2003, Canberra, Australia, pp. 2696-2703.
  5. Babu, B. and Munawar, S. (2007). Differential evolution strategies for optimal design of shell-and-tube heat exchangers, Chemical Engineering Science 62(14): 3720-3739.10.1016/j.ces.2007.03.039
  6. Bashash, S., Salehi-Khojin, A. and Jalili, N. (2008). Forced vibration analysis of flexible Euler-Bernoulli beams with geometrical discontinuities, Proceedings of the American Control Conference, ACC 2008, Seattle WA, USA, pp. 4029-4034.
  7. Biondi, B. and Caddemi, S. (2005). Closed form solutions of Euler-Bernoulli beams with singularities, International Journal of Solids and Structures 42(9-10): 3027-3044.10.1016/j.ijsolstr.2004.09.048
  8. Biondi, B. and Caddemi, S. (2007). Euler-Bernoulli beams with multiple singularities in the flexural stiffness, European Journal of Mechanics, A: Solids 26(7): 789-809.10.1016/j.euromechsol.2006.12.005
  9. Chakraborty, U.K. (2008). Advances in Differential Evolution, 1st Edition, Springer, New York, NY.10.1007/978-3-540-68830-3
  10. Chesne, S. (2012 ). Identification of beam boundary conditions using displacement derivatives estimations, Proceedings of the 16th IFAC Symposium on System Identification, Brussels, Belgium, pp. 416-421.10.3182/20120711-3-BE-2027.00020
  11. Das, S. and Suganthan, P.N. (2011). Differential evolution: A survey of the state-of-the-art, IEEE Transactions on Evolutionary Computation 15(1): 4-31.10.1109/TEVC.2010.2059031
  12. De Munck, M., Moens, D., Desmet, W. and Vandepitte, D. (2009). An efficient response surface based optimisation method for non-deterministic harmonic and transient dynamic analysis, Computer Modeling in Engineering & Sciences 47(2): 119-166.
  13. De Rosa, M. and Auciello, N. (1996). Free vibrations of tapered beams with flexible ends, Computers & Structures 60(2): 197-202.10.1016/0045-7949(95)00397-5
  14. De Rosa, M., Franciosi, C. and Maurizi, M. (1996). On the dynamic behaviour of slender beams with elastic ends carrying a concentrated mass, Computers & Structures 58(6): 1145-1159.10.1016/0045-7949(95)00199-9
  15. Eiben, A.E. and Smith, J.E. (2013). Introduction to Evolutionary Computing, Natural Computing Series, Springer-Verlag, Heidelberg.
  16. Elishakoff, I. and Pentaras, D. (2006). Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams, Journal of Sound and Vibration 298(1-2): 439-445.10.1016/j.jsv.2006.05.028
  17. Grossi, R. and Albarracín, C. (2003). Eigenfrequencies of generally restrained beams, Journal of Applied Mathematics 2003(10): 503-516.10.1155/S1110757X03203065
  18. Kitayama, S., Arakawa, M. and Yamazaki, K. (2011). Differential evolution as the global optimization technique and its application to structural optimization, Applied Soft Computing 11(4): 3792-3803.10.1016/j.asoc.2011.02.012
  19. Lin, S.C. and Hsiao, K.M. (2001). Vibration analysis of a rotating Timoshenko beam, Journal of Sound and Vibration 240(2): 303-322.10.1006/jsvi.2000.3234
  20. Loja, M.A.R., Barbosa, J.I. and Mota Soares, C.M. (2010). Optimal design of piezolaminated structures using b-spline strip finite element models models and genetic algorithms, International Journal for Computational Engineering Science and Mechanics 11(4): 185-195.10.1080/15502287.2010.483240
  21. Loja, M.A.R., Silva, T.A.N., Barbosa, I.J.C. and Simes, C.N.F. (2013). Analysis and optimization of agro-waste composite beam structures, Usak University Journal of Material Sciences 2(1): 45-60.10.12748/uujms/20131711
  22. Loja, M.A.R., Mota Soares, C.M. and Barbosa, J.I. (2014). Optimization of magneto-electro-elastic composite structures using differential evolution, Composite Structures 107: 276-287.10.1016/j.compstruct.2013.08.005
  23. Loja, M.A.R. (2014). On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures, Journal of Symbolic Computation 61-62: 12-30.10.1016/j.jsc.2013.10.006
  24. Maiz, S., Bambill, D.V., Rossit, C.A. and Laura, P. (2007). Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution, Journal of Sound and Vibration 303(3-5): 895-908.10.1016/j.jsv.2006.12.028
  25. Majkut, L. (2006). Identification of beams boundary conditions in ill-posed problem, Journal of Theoretical and Applied Mechanics 44(1): 91-105.
  26. Maplesoft (2010). Maple 14.
  27. Martinović, G., Bajer, D. and Zorić, B. (2014). A differential evolution approach to dimensionality reduction for classification needs, International Journal of Applied Mathematics and Computer Science 24(1): 111-122, DOI: 10.2478/amcs-2014-0009.10.2478/amcs-2014-0009
  28. Mboup, M., Join, C. and Fliess, M. (2009). Numerical differentiation with annihilators in noisy environment, Numerical Algorithm 50(4): 439-467.10.1007/s11075-008-9236-1
  29. Meirovitch, L. (2001). Fundamentals of Vibrations, McGraw-Hill, Boston, MA.10.1115/1.1421112
  30. Nallim, L.G. and Grossi, R.O. (1999). A general algorithm for the study of the dynamical behaviour of beams, Applied Acoustics 57(4): 345-356.10.1016/S0003-682X(98)00055-3
  31. Posiadała (1997). Free vibrations of uniform Timoshenko beams with attachments, Journal of Sound and Vibration 204(2): 359-369.10.1006/jsvi.1997.0952
  32. Price, K., Storn, R. and Lampinen, J. (2005). Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, New York, NY.
  33. Rasmussen, C.E. and Williams, C.K.I. (2005). Gaussian Processes for Machine Learning, The MIT Press, Cambridge, MA.10.7551/mitpress/3206.001.0001
  34. Reed, H.M., Nichols, J.M. and Earls, C.J. (2013). A modified differential evolution algorithm for damage identification in submerged shell structures, Mechanical Systems and Signal Processing 39(1-2): 396-408.10.1016/j.ymssp.2013.02.018
  35. Savoia, M. and Vincenzi, L. (2008). Differential evolution algorithm for dynamic structural identification, Journal of Earthquake Engineering 12(5): 800-821.10.1080/13632460701574738
  36. Silva, T.A.N. and Loja, M.A.R. (2013). Differential evolution on the minimization of thermal residual stresses in functionally graded structures, in A. Madureira, C. Reis and V. Marques (Eds.), Computational Intelligence and Decision Making-Trends and Applications, Springer-Verlag, Dordrecht, pp. 289-299.10.1007/978-94-007-4722-7_27
  37. Silva, T.A.N. and Maia, N.M.M. (2011). Elastically restrained Bernoulli-Euler beams applied to rotary machinery modelling, Acta Mechanica Sinica 27(1): 56-62.10.1007/s10409-011-0401-8
  38. Silva, T.A.N. and Maia, N.M.M. (2013). Modelling a rotating shaft as an elastically restrained Bernoulli-Euler beam, Experimental Techniques 37(5): 6-13.10.1111/j.1747-1567.2011.00794.x
  39. Storn, R. and Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 11(4): 341-359.10.1023/A:1008202821328
  40. Vaz, J.C. (2008). Análise do comportamento dinˆamico de uma viga de Euler-Bernoulli escalonada com apoios elasticamente variáveis, Master’s thesis, Universidade Federal de Itajubá, Itajubá, MG.
  41. Wang, L. and Yang, Z. (2011). Identification of boundary conditions of tapered beam-like structures using static flexibility measurements, Mechanical Systems and Signal Processing 25(7): 2484-2500.10.1016/j.ymssp.2011.04.003
  42. Wu, J.S. and Chen, D.W. (2003). Bending vibrations of wedge beams with any number of point masses, Journal of Sound and Vibration 262(5): 1073-1090.10.1016/S0022-460X(02)01084-2
  43. Yoneyama, S. and Arikawa, S. (2012). Identification of boundary condition from measured displacements for linear elastic deformation fields, Procedia IUTAM 4: 215-226. 10.1016/j.piutam.2012.05.023
DOI: https://doi.org/10.1515/amcs-2015-0019 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 245 - 257
Submitted on: Oct 11, 2013
Published on: Jun 25, 2015
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Tiago Silva, Maria Loja, Nuno Maia, Joaquim Barbosa, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.