Have a personal or library account? Click to login
Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis Cover

Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis

Open Access
|Dec 2017

References

  1. 1. Anthony D.B. (1974), Rapid devolatilization and hydrogasification of pulverized coal, DSc. thesis, Massachusetts Institute of Technology.
  2. 2. Armstrong R., Kulesza B.L.J. (1981), An approximate solution to the equation x = exp (−x/ϵ), Bull. Institute of Mathematics and its Applications, 17, 56.
  3. 3. Brown M. E. (2001), Introduction to Thermal Analysis, Techniques and Applications, Kluwer Academic Publisher, Dordrecht.
  4. 4. Burnham A.K., Braun R.L. (1999), Global kinetic analysis of complex materials, Energy Fuels, 13, 1-22.10.1021/ef9800765
  5. 5. Burnham A.K., Schmidt B.J., and Braun R.L (1995), A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues, Geochem, 23, 931-939.10.1016/0146-6380(95)00069-0
  6. 6. Capart R, Khezami L., Burnham A.K. (2004), Assessment of various kinetic models for the pyrolysis of microgranular cellulose, Thermochim. Acta, 417(1), 79-89.
  7. 7. Conesa J. A., Marcilla A., Caballero J. A., Font R. (2001), Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data, J. Anal. Appl. Pyrolysis, 617, 58–59.
  8. 8. Conesa J.A., Caballero J.A., Marcilla A., Font R. (1995), Analysis of different kinetic models in the dynamic pyrolysis of cellulose, Thermochim. Acta, 254, 175-192.
  9. 9. Criado J.M., Pérez-Maqueda L.A. (2005), Sample controlled thermal analysis and kinetics, J. Therm. Anal. Cal., 80, 27-33.10.1007/s10973-005-0609-6
  10. 10. Dhaundiyal A., Singh S.B. (2016), Asymptotic approximations to the distributed activation energy model for non-isothermal pyrolysis of loose biomass using the Weibull distribution, Archivum Combustionis, 36(2), 131-146.
  11. 11. Dhaundiyal A., Singh S.B. (2016), Proceedings of the Latvian Academy of Sciences, Section B. Natural, Exact, and Applied Sciences, 70, 64–70.
  12. 12. Di Blasi C. (2008), Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, 34, 47-90.10.1016/j.pecs.2006.12.001
  13. 13. Doyle C.D. (1962), Estimating isothermal life from thermogravimetric data, J. Appl. Polym. Sci. 6, 639-642.10.1002/app.1962.070062406
  14. 14. Ferdous D, Dalai A.K, Bej S.K., Thring R.W. (2002), Pyrolysis of lignins, experimental and kinetics studies, Energy Fuels, 16, 1405–141210.1021/ef0200323
  15. 15. Folgueras M.B., Diaz R.M., Xiberta J., Prieto I. (2003), Thermogravimetric analysis of the co-combustion of coal and sewage sludge, Fuel, 82, 2051-2055.10.1016/S0016-2361(03)00161-3
  16. 16. Galgano A., Blasi C.D. (2003), Modeling wood degradation by the unreacted-core-shrinking approximation, Eng. Chem. Res, 42, 2101-2111.10.1021/ie020939o
  17. 17. Giuntoli J., de Jong W., Arvelakis S., Spliethoff H., Verkooijen A.H.M. (2009), Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis, Dry distiller's grains with solubles (DDGS) and chicken manure, Journal of Analytical and Applied Pyrolysis, 85(1), 301-312.10.1016/j.jaap.2008.12.007
  18. 18. Hanbaba P., van Heek K.H, Jüntgen H., Peters W. (1968), Non-isothermal kinetics of coal pyrolyse, Part II, Extension of the theory of the evolution of gas and experimental confirmation of bituminous coal, Fuel Chemistry, 49(12), 1968, 368-376.,
  19. 19. Howard J.B. (1981), Fundamentals of Coal Pyrolysis and Hydropyrolysis, in Chemistry of Coal Utilization, (M.A.Elliott, Ed) Wiley & Sons.
  20. 20. Koreňová Z., JumaM., Annus J., Markoš J., Jelemensky L. (2006), Kinetics of pyrolysis and properties of carbon black from a scrap tire, Chemical Papers, 60, 422–426.10.2478/s11696-006-0077-x
  21. 21. Lakshmanan C.C., White N. (1994), A new distributed activation energy model using Weibull distribution for the representation of complex kinetics, Energy Fuels, 8, 1158–1167.10.1021/ef00048a001
  22. 22. Lapuerta, M., Hernández, J.J., Rodríguez, J. (2004), Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis, Biomass and Bioenergy, 27(4), 385–91.10.1016/j.biombioe.2003.11.010
  23. 23. Mysyk R.D., Whyman G.E., Savoskin M.V., Yaroshenko A.P. (2005), Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds, J. Therm. Anal and Cal., 79(3), 515-519.
  24. 24. Niksa S., Lau, C-W. (1993), Global rates of devolatilization for various coal types Combust, Flame, 94, 293-30710.1016/0010-2180(93)90075-E
  25. 25. Otero M., Calvo L.F., Gil M.V., García A.I., Morán A. (2008), Cocombustion Of Different Sewage Sludge and Coal, A non-isothermal thermogravimetric kinetic analysis, Bioresource Technology, 99, 6311-19.10.1016/j.biortech.2007.12.011
  26. 26. Pitt G.J. (1962), The kinetics of the evolution of volatile products from coal, Fuel, 1, 267-274
  27. 27. Pysiak J.J., Badwi Y.Al. (2004), Kinetic equations for thermal dissociation processes, 76, 521–52810.1023/B:JTAN.0000028030.49773.ad
  28. 28. Quan C., Li A., Gao N. (2009), Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes, Waste Management, 29, 2353–2360.10.1016/j.wasman.2009.03.020
  29. 29. Robeva R., Davies R., Hodge T., Enyedi A. (2010), Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics, CBE Life Sciences Education (The American Society for Cell Biology), 9 (3), 227–240.10.1187/cbe.10-03-0019
  30. 30. Skrdla P.J., Roberson R.T. (2005), Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies, applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals, J. Phys. Chem. B, 109, 10611-10619.10.1021/jp045268h
  31. 31. Solomon P.R., Hamblen D.G. (1983), Finding Order in Coal Pyrolysis Kinetics, Topical Report Submitted to the U.S. Department of Energy. Progr. Energy Combust. Sci., 9, 323-361.
  32. 32. Suuberg E.M. (1983), Approximate solution technique for noniso-thermal, Gaussian distributed activation energy models, Combust. Flame, 50, 243-24510.1016/0010-2180(83)90066-4
  33. 33. Szczodrak J., Fiedurek J. (1996), Technology for conversion of lignocellulosic biomass to ethanol, Biomass and Bioenergy, 34, 367-375.10.1016/0961-9534(95)00114-X
  34. 34. Teng H., Hsieh C.T. (1999), Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coa, Ind. Engg. Chem. Res, 37, 3618-3624.
  35. 35. Vand V. (1943), A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc., 55, 222-246
  36. 36. White J.E., Catallo W.J., Legendre B.L. (2011), Biomass pyrolysis kinetics, A comparative critical review with relevant agriculture residue case studies, J. Anal. Appl. Pyrolysis, 91 (1), 1-33,10.1016/j.jaap.2011.01.004
  37. 37. Zhu H.M., Yan J.H., Jiang X.G., Lai Y.E., Cen K.F(2009), Analysis Of Volatile Species Kinetics During Typical Medical Waste Materials Pyrolysis Using A Distributed Activation Energy Model, Journal of Hazardous Materials, 162(2), 646-651.10.1016/j.jhazmat.2008.05.07718579296
DOI: https://doi.org/10.1515/ama-2017-0045 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 293 - 301
Submitted on: Jun 17, 2016
Accepted on: Nov 28, 2017
Published on: Dec 30, 2017
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Alok Dhaundiyal, Suraj B. Singh, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.