Have a personal or library account? Click to login
Increasing of Energy Efficiency of Spindles with Fluid Bearings Cover

Increasing of Energy Efficiency of Spindles with Fluid Bearings

Open Access
|Oct 2017

References

  1. 1. Badescu V. (2015), Optimal profiles for one dimensional slider bearings under technological constraints, Tribology International, 90, 198-216.10.1016/j.triboint.2015.04.023
  2. 2. Cao H, Zhang X., Chen X. (2017), The concept and progress of intelligent spindles: A review, International Journal of Machine Tools and Manufacture, 112, 21-52.10.1016/j.ijmachtools.2016.10.005
  3. 3. Chasalevris A., Dohnal F. (2016), Improving stability and operation of turbine rotors using adjustable journal bearings, Tribology International, 104, 369-382.10.1016/j.triboint.2016.06.022
  4. 4. Diaz N., Redelsheimer E., Dornfeld D. (2011), Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use, Sustainability in Manufacturing. Energy Efficiency in Machine Tools, 263-267.
  5. 5. EC - 7th Framework Programme. Challenge 6: ICT for Mobility, Environmental Sustainability and Energy Efficiency. Deliverable D3.3: “Design for energy efficiency” (2013), Estomad Project.
  6. 6. Fedorynenko D., Boyko S., Sapon S. (2015), The search of the spatial functions of pressure in adjustable hydrostatic radial bearing, Acta Mechanica et Automatica, 9(1), 23-26.10.1515/ama-2015-0005
  7. 7. Fedorynenko D., Boyko S., Sapon S. (2016), Accuracy of spindle units with hydrostatic bearings, Acta Mechanica et Automatica, 10(2), 117-124.10.1515/ama-2016-0019
  8. 8. Fedorynenko D., Sapon S. (2016), Spindle Hydrostatic Bearings (in Ukrainian), ChNUT.
  9. 9. Fedorynenko D., Sapon S., Habibulina A. (2014), Adjustable Journal Hybrid Fluid Bearing, Patent of Ukraine No 89288.
  10. 10. Grossmann K. (2015), Thermo-energetic Design of Machine Tools, Springer International Publishing.
  11. 11. Huang P., Lee W., Chan C. (2016), Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning, International Journal of Machine Tools and Manufacture, 108, 44-51.10.1016/j.ijmachtools.2016.05.001
  12. 12. Mahner M, Lehn A., Schweizer B. (2016), Thermogas- and thermo-hydrodynamic simulation of thrust and slider bearings: Convergence and efficiency of different reduction approaches, Tribology International, 93, 539-554.10.1016/j.triboint.2015.02.030
  13. 13. Nakao Y., Mimura M., Kobayashi F. (2012), Water energy drive spindle supported by water hydrostatic bearing for ultra-precision machine tool, http://www.researchgate.net/publication/228896125.
  14. 14. Perovic B. (2012), Hydrostatic guides and bearings: basic principles, calculation and design of hydraulic diagrams (in German), Springer-Verlag Berlin Heidelberg.
  15. 15. Pfefferkorn F., Lei S., Jeon Y., Haddad G. (2009), A metric for defining the energy efficiency of thermally assisted machining, International Journal of Machine Tools and Manufacture, 49, 357-365.10.1016/j.ijmachtools.2008.12.009
  16. 16. Rowe W.B. (2012), Hydrostatic, aerostatic and hybrid bearing design, Butterworth-Heinemann Press.
  17. 17. Salazara J, Santosa I. (2017), Active tilting-pad journal bearings supporting flexible rotors: Part I – The hybrid lubrication, Tribolo-gy International, 107, 94-105.10.1016/j.triboint.2016.11.018
  18. 18. Singh V., Venkateswara Rao P., Ghosh S. (2012), Development of specific grinding energy model, International Journal of Machine Tools and Manufacture, 60, 1-13.10.1016/j.ijmachtools.2011.11.003
  19. 19. Takabi J., Khonsari M. (2015), On the thermally-induced seizure in bearings: A review, Tribology International, 90, 118-130.10.1016/j.triboint.2015.05.030
  20. 20. Tsybulia S., Fedorynenko D., Kostenko I., Buialska N. (2011), Corrosion Protection of Elements of Spindle Hydrostatic Bearing of Machine Tools (in Ukrainian), Materials of the XI International Conference: Efficiency Implementation of Scientific, Resource and Industrial Facilities in Modern Terms, Kyiv.
  21. 21. Wardle F. (2015), Ultra Precision Bearings, Elsevier.
  22. 22. Zahedi A., Tawakoli T, Akbari J. (2015), Energy aspects and work-piece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina–zirconia ceramics, International Journal of Machine Tools and Manufacture, 90, 16-28.10.1016/j.ijmachtools.2014.12.002
  23. 23. Zuo X., Wang J., Yin Z., Li S. (2013), Comparative performance analysis of conical hydrostatic bearings compensated by variable slot and fixed slot, Tribology International, 66, 83-92.10.1016/j.triboint.2013.04.013
  24. 24. http://hyprostatik.de/fileadmin/inhalte/pdfs/hydrostatic_spindles.pdf
DOI: https://doi.org/10.1515/ama-2017-0031 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 204 - 209
Submitted on: Oct 5, 2015
Accepted on: Sep 18, 2017
Published on: Oct 7, 2017
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Dmytro Fedorynenko, Serhii Sapon, Sergiy Boyko, Anastasiia Urlina, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.