Have a personal or library account? Click to login
Minimal Kinematic Boundary Conditions for Computational Homogenization of the Permeability Coefficient Cover

Minimal Kinematic Boundary Conditions for Computational Homogenization of the Permeability Coefficient

Open Access
|Oct 2017

References

  1. 1. Babuška I., Strouboulis T. (2001), The finite element method and its reliability, Clarendon Press, Oxford.10.1093/oso/9780198502760.001.0001
  2. 2. Bertsekas D.P. (1982), Constrained optimization and Lagrange multiplier methods, Athena Scientific, Belmont, Massachusetts.
  3. 3. Boutin C., Kacprzak G., Thiep D. (2011), Compressibility and permeability of sand–kaolin mixtures. Experiments versus non-linear homogenization schemes, International Journal for Numerical and Analytical Methods in Geomechanics, 35(1), 21-52.10.1002/nag.891
  4. 4. Brenner S.C., Scott R. (2007), The mathematical theory of finite element methods (Vol. 15), Springer Science & Business Media.
  5. 5. Chapuis R.P. (1990), Sand-bentonite liners: predicting permeability from laboratory tests, Canadian Geotechnical Journal, 27(1), 47-57.10.1139/t90-005
  6. 6. Du X., Ostoja-Starzewski M. (2006), On the size of representative volume element for Darcy law in random media, in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2074), 2949-2963, The Royal Society.
  7. 7. Feyel F. (2003), A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, 192(28), 3233-3244.10.1016/S0045-7825(03)00348-7
  8. 8. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M. (2001), Gradient-enhanced computational homogenization for the micro-macro scale transition, Le Journal de Physique IV, 11(PR5), Pr5-145.10.1051/jp4:2001518
  9. 9. Hill R. (1965), Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13(2), 89-101.10.1016/0022-5096(65)90023-2
  10. 10. Inglis H.M., Geubelle P.H., Matouš K. (2008), Boundary condition effects on multiscale analysis of damage localization, Philosophical Magazine, 88(16), 2373-2397.10.1080/14786430802345645
  11. 11. Juang, C.H., Holtz R.D. (1986), Fabric, pore size distribution, and permeability of sandy soils, Journal of Geotechnical Engineering, 112(9), 855-868.10.1061/(ASCE)0733-9410(1986)112:9(855)
  12. 12. Kacprzak G. (2006), Etude du comportement mécanique des mélanges sable/argile, PhD ENTPE/INSA, Lyon.
  13. 13. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M. (2010), Computational homogenisation for non-linear heterogeneous solids, Multiscale Modeling in Solid Mechanics: Computational Approaches, 3, 1-42.10.1142/9781848163089_0001
  14. 14. Mesarovic S.D., Padbidri J. (2005), Minimal kinematic boundary conditions for simulations of disordered microstructures, Philosophical Magazine, 85(1), 65-78.10.1080/14786430412331313321
  15. 15. Revil A., Cathles L.M. (1999), Permeability of shaly sands, Water Resources Research, 35(3), 651-662.10.1029/98WR02700
  16. 16. Wojciechowski M. (2014) Fempy – finite element method in python, http://fempy.org, http://geotech.p.lodz.pl:5080/fempy, last access: August 2017.
  17. 17. Wojciechowski M., Lefik M. (2016), On the static nature of minimal kinematic boundary conditions, Engineering Transactions, 64(4), 581-587.
DOI: https://doi.org/10.1515/ama-2017-0030 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 199 - 203
Submitted on: Mar 16, 2016
Accepted on: Sep 18, 2017
Published on: Oct 7, 2017
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Marek Wojciechowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.