Have a personal or library account? Click to login
Laboratory Testing of Velocity Sensing in a Magnetorheological Damper with Power Generation Cover

Laboratory Testing of Velocity Sensing in a Magnetorheological Damper with Power Generation

Open Access
|Oct 2017

References

  1. 1. Chen C., Liao W. H. (2010), A self-powered, self-sensing magnetorheological damper, Proceedings of IEEE Conference on Mechatronics and Automation, 1364−1369.10.1109/ICMA.2010.5589157
  2. 2. Chen C., Liao W. H. (2012), A self-sensing magnetorheological damper with power generation, Smart Materials and Structures, 21, 025014.10.1088/0964-1726/21/2/025014
  3. 3. Jansen L. M., Dyke S. J. (2000), Semi-active control strategies for MR dampers. ASCE, Journal of Engineering Mechanics, 126(8), 795–803.10.1061/(ASCE)0733-9399(2000)126:8(795)
  4. 4. Jung H. J., Jang D. D., Cho S. W., Koo J. H. (2009), Experimental verification of sensing capability of an electromagnetic induction system for an MR fluid damper based control system, 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Journal of Physics: Conference Series, 149, 012058.10.1088/1742-6596/149/1/012058
  5. 5. Jung H. J., Jang D. D., Koo J. H., Cho S. W. (2010), Experimental Evaluation of a ‘Self-Sensing Capability of an Electromagnetic Induction System Designed for MR Dampers, Journal of Intelligent Material Systems and Structures, 21, 837−836.10.1177/1045389X10367837
  6. 6. Karnopp D. C., Crosby M. J., Harwood R. A. (1974), Vibration control using semi-active force generator, ASME Journal of Engineering for Industry, 96(2), 619-626.10.1115/1.3438373
  7. 7. Li Z, Zhuo L, Luhrs G, Lin L., Qin Y.( 2013b), Electromagnetic Energy harvesting shock absorbers: design, modeling and road tests, IEEE Transactions Vehicle Technology, 62, 1065–74.10.1109/TVT.2012.2229308
  8. 8. Li Z., Zhuo L., Kuang J., Luhrs G. (2013a), Energy-Harvesting Shock Absorber with a Mechanical Motion Rectifier, Smart Materials and Structures, 22, 028008.10.1088/0964-1726/22/2/025008
  9. 9. Sapiński B. (2011), Experimental study of a self-powered and sensing MR damper-based vibration control system, Smart Materials and Structures, 20, 105007.10.1088/0964-1726/20/10/105007
  10. 10. Sapinski B. (2014), Energy harvesting MR linear damper: prototyping and testing, Smart Materials and Structures, 23, 035021.10.1088/0964-1726/23/3/035021
  11. 11. Sapinski B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.10.1088/0964-1726/25/12/125017
  12. 12. Wang D. H., Bai X. X. (2013), A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, 22, 075001.10.1088/0964-1726/22/7/075001
  13. 13. Wang D. H., Bai X. X., Liao W. H. (2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, 19, 105008.10.1088/0964-1726/19/10/105008
  14. 14. Zhu S. Y., Shen W. A., Xu Y. L., Lee W. C. (2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, 34, 198−212.10.1016/j.engstruct.2011.09.024
  15. 15. www.mts.com
DOI: https://doi.org/10.1515/ama-2017-0027 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 186 - 189
Submitted on: Feb 15, 2017
Accepted on: Aug 7, 2017
Published on: Oct 7, 2017
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Bogdan Sapiński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.