Have a personal or library account? Click to login
Mechatronic Device for Locomotor Training Cover

References

  1. 1. Akdogan E., Adli M.A. (2011), The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics, 21(3), 509-522.10.1016/j.mechatronics.2011.01.005
  2. 2. Bae J., Tomizuka M. (2012), A gait rehabilitation strategy inspired by an iterative learning algorithm, Mechatronics, 22(2), 213-221.10.1016/j.mechatronics.2012.01.009
  3. 3. Behrman A.L., Harkema S.J. (2000), Locomotor training after human spinal cord injury: a series of case studies, Physical Therapy, 80(7), 688-700.10.1093/ptj/80.7.688
  4. 4. Botticello A.L., Rohrbach T., Cobbold N. (2014), Disability and the built environment: aninvestigation of community and neighborhood land uses and participation for physically impaired adults, Annals of Epidemiology, 24(7), 545-550.10.1016/j.annepidem.2014.05.003
  5. 5. Boyd J.E., Little J.J. (2005), Biometric gait recognition, Advanced Studies in Biometrics, Springer, 3161, 19-42.10.1007/11493648_2
  6. 6. Campa R., Kelly R., Santibanez V. (2004), Windows-based real-time control of direct-drive mechanisms: platform description and experiments, Mechatronics, 14(9), 1021-1036.10.1016/j.mechatronics.2004.04.004
  7. 7. Cao J., Xie S.Q., Das R., Zhu G.L. (2014), Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects, Medical engineering & Physics, 36(12), 1555-1566.10.1016/j.medengphy.2014.08.005
  8. 8. Cappozzo A., Della Croce U., Leardini A., Chiari L. (2005), Human movement analysis using stereophotogrammetry Part 1: theoretical background, Gait & Posture, 21(2), 186–196.10.1016/S0966-6362(04)00025-6
  9. 9. Duda S., Gembalczyk G., Kciuk S., Gasiorek D. (2014), Mechatronic device to protect against falls during locomotor rehabilitation, Proceedings of the 3rd Joint International Conference on Multibody System Dynamics, Busan, 121-122.
  10. 10. Duda S., Kawlewski K., Gembalczyk G. (2015), Concept of the System for Control over Keeping up the Movement of a Crane, Solid State Phenomena, 220, 339-344.10.4028/www.scientific.net/SSP.220-221.339
  11. 11. Duda S., Michnik R., Kciuk S., Jurkojć J., Kawlewski K., Machoczek T. (2011), The conception of a mechatronic device for locomotor training, Aktualne Problemy Biomechaniki, 5, 29-36.
  12. 12. Faust O., Yu W., Acharya U.R. (2015), The role of real-time in biomedical science: A meta-analysis on computational complexity, delay and speedup, Computers in Biology and Medicine, 58, 73-84.10.1016/j.compbiomed.2014.12.02425618217
  13. 13. Gembalczyk G., Duda S. (2012), Design and validation of devices for measuring the force and the angle of inclination rope in crane, Modelowanie inżynierskie, 14(45), 32-38. [in Polish]
  14. 14. Hesse S., Werner C. (2009), Connecting research to the needs of patients and clinicians, Brain Research Bulletin, 78, 26-34.10.1016/j.brainresbull.2008.06.00418601984
  15. 15. Hidler J., Brennan D., Black I., Nichols D., Brady K. Nef T. (2011), ZeroG: Overground gait and balance training system, Journal of Rehabilitation Research & Development, 48(4), 287-298.10.1682/JRRD.2010.05.009821674384
  16. 16. Hidler J.M., Wall A.E. (2005), Alteration in muscle activation patterns during robotic-assisted walking, Clinical Biomechanics, 20, 184-193.10.1016/j.clinbiomech.2004.09.01615621324
  17. 17. Hussain S., Xie S.Q., Jamwal P.K. (2013), Control of a robotic orthosis for gait rehabilitation, Robotics and Autonomous Systems, 61(9), 911-919.10.1016/j.robot.2013.01.007
  18. 18. Kaliński K.J., Buchholz C. (2015), Mechatronic design of strongly nonlinear systems on a basis of three wheeled mobile platform, Mechanical Systems and Signal Processing, 52-53, 700-721.10.1016/j.ymssp.2014.06.016
  19. 19. Lunenburger L., Colombo G., Riener R., Dietz V. (2004), Biofeedback in gait training with the robotic orthosis Lokomat, Engineering in Medicine and Biology Society, 4888-4891.
  20. 20. Mailah M., Jahanabadi H., Zain M.Z.M., Priyandoko G. (2009), Modelling and control of a human-like arm incorporating muscle models, Journal of Mechanical Engineering Science, 223(7), 1569-1577.10.1243/09544062JMES1289
  21. 21. Marchal-Crespo L., Reinkensmeyer D.J. (2009), Review of control strategies for robotic movement training after neurologic injury, Journal of neuroengineering and rehabilitation, 6, 20.10.1186/1743-0003-6-20271033319531254
  22. 22. Mulroy S.J., Klassen T., Gronley J.K., Eberly V.J., Brown D.A., Sullivan K.J. (2010), Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study, Physical Therapy, 90(2), 209-223.10.2522/ptj.2009014120022996
  23. 23. Sawers A., Ting L.H. (2014), Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots, Journal of neuroengineering and rehabilitation, 11, 142.10.1186/1743-0003-11-142419726125284060
  24. 24. Sherafat S., Salavati M., Takamjani I.E., Akhbari B., Mohammadirad S., Mazaheri m., Negahban H. (2013), Intrasession and intersession reliability of postural control in participants with and without nonspecific low back pain using the Biodex Balance System, Journal of manipulative and physiological therapeutics, 36(2), 111-118.10.1016/j.jmpt.2012.12.00523499146
  25. 25. Walker M.L., Ringleb S.I., Maihafer G.C., Walker R., Crouch J.R., Van Lunen B., Morrison S. (2010), Virtual reality–enhanced partial body weight–supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Archives of physical medicine and rehabilitation, 91(1), 115-122.10.1016/j.apmr.2009.09.00920103405
DOI: https://doi.org/10.1515/ama-2016-0049 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 310 - 315
Submitted on: Aug 26, 2015
Accepted on: Dec 9, 2016
Published on: Dec 28, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Sławomir Duda, Damian Gąsiorek, Grzegorz Gembalczyk, Sławomir Kciuk, Arkadiusz Mężyk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.