Have a personal or library account? Click to login
On the Numerical Solution of the Initial-Boundary Value Problem with Neumann Condition for the Wave Equation by the Use of the Laguerre Transform and Boundary Elements Method Cover

On the Numerical Solution of the Initial-Boundary Value Problem with Neumann Condition for the Wave Equation by the Use of the Laguerre Transform and Boundary Elements Method

Open Access
|Dec 2016

References

  1. 1. Bamberger A., Ha-Duong T. (1986a), Variational formulation for calculating the diffraction of an acoustic wave by a rigid surface, Math. Methods Appl. Sci., 8(4), 598-608 (in French).10.1002/mma.1670080139
  2. 2. Bamberger A., Ha-Duong T. (1986b), Variational space-time formulation for computation of the diffraction of an acoustic wave by the retarded potential (I), Math. Methods Appl. Sci., 8(3), 405-435 (in French).10.1002/mma.1670080127
  3. 3. Chapko R., Johansson B. T. (2016), Numerical solution of the Dirichlet initial boundary value problem for the heat equation in exterior 3-dimensional domains using integral equations, Journal of Engineering Mathematics, 1-15.10.1007/s10665-016-9858-6
  4. 4. Costabel M. (1988), Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., V. 19, 613626.
  5. 5. Dautray R., Lions J. L. (1992), Mathematical analysis and numerical methods for science and technology, Volume 5 Evolution problems I., Springer-Verlag, Berlin.
  6. 6. Dominguez V., Sayas F. J. (2013), Some properties of layer potentials and boundary integral operators for wave equation, Journal of Integral Equations and Applications, 25(2), 253-294.10.1216/JIE-2013-25-2-253
  7. 7. Ha-Duong T. (2003), On retarded potential boundary integral equations and their discretization, In Davies P.; Duncan D.; Martin P.; Rynne B. (eds.): Topics in computational wave propagation. Direct and inverse problems, Berlin: Springer-Verlag, 301-336.10.1007/978-3-642-55483-4_8
  8. 8. Halazyuk V. A., Lyudkevych Y. V., Muzychuk A. O. (1984), Method of integral equations in non-stationary defraction problems, LSU. Dep. in UkrNIINTI, 601 (in Ukrainian).
  9. 9. Hsiao G. C., Wendland W. L. (1977), A finite element method for some integral equations of the first kind, J. Math. Anal. Appl., 58, 449–481.
  10. 10. Hsiao G. C., Wendland W. L. (2008), Boundary Integral Equations, Applied Mathematical Sciences, Springer-Verlag Berlin Heidelberg.10.1007/978-3-540-68545-6
  11. 11. Jung B. H., Sarkar T. K., Zhang Y., Ji Z., Yuan M., Salazar-Palma M., Rao S. M., Ting S. W., Mei Z., De A. (2010), Time and frequency domain solutions of em problems using integral equations and a Hybrid methodology, Wiley-IEEE Press.10.1002/9780470892329
  12. 12. Keilson J. (1981), The bilateral Laguerre transform, Applied Mathematics and Computation, 8(2), 137–174.10.1016/0096-3003(81)90004-7
  13. 13. Laliena A. R., Sayas F. J. (2009), Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112(4), 637-678.
  14. 14. Litynskyy S., Muzychuk A. (2015a), Retarded Potentials and Laguerre Transform for Initial-Boundary Value Problems for the Wave Equation, 20th IEEE International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2015), Lviv: Pidstryhach IAPMM of NASU, 139-142 (in Ukrainian).10.1109/DIPED.2015.7324278
  15. 15. Litynskyy S., Muzychuk A. (2015b), Solving of the initial-boundary value problems for the wave equation by the use of retarded potential and the Laguerre transform, Matematychni Studii, 44(2), 185-203 (in Ukrainian).10.15330/ms.44.2.185-203
  16. 16. Litynskyy S., Muzychuk A. (2016), On the generalized solution of the initial-boundary value problems with Neumann condition for the wave equation by the use of retarded double layer potential and the Laguerre transform, Journal of Computational and Applied Mathematics, 2(122), 21-39.
  17. 17. Litynskyy S., Muzychuk Yu., Muzychuk A. (2009), On weak solutions of boundary problems for an infinite triangular system of elliptic equations, Visnyk of the Lviv university. Series of Applied mathematics and informatics, 15, 52-70 (in Ukrainian).10.1109/DIPED.2009.5306940
  18. 18. Lubich Ch. (1994), On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 365-389.
  19. 19. Lyudkevych Y. V., Muzychuk A. (1990), Numerical solution of boundary problems for wave eqution, L'viv: LSU, 80 (in Ukrainian).
  20. 20. Monegato G., Scuderi L., Staniс M. P. (2011), Lubich convolution quadratures and their application to problems described by space-time BIEs, Numerical Algorithms, Springer Science, 3(56), 405–436.10.1007/s11075-010-9394-9
  21. 21. Muzychuk Yu. A., Chapko R. S. (2012), On variational formulations of inner boundary value problems for infinite systems of elliptic equations of special kind, Matematychni Studii, 38(1), 12-34.
  22. 22. Mykhas'kiv V. V., Martin P. A., Kalynyak O. I. (2014), Time-domain BEM for 3-D transient elastodynamic problems with interacting rigid movable disc-shaped inclusions, Computational Mechanics, 53(6), 1311-1325.10.1007/s00466-014-0975-7
  23. 23. Polozhyy H. (1964), Equations of mathematical physics, Nauka, Moscow (in Russian).
  24. 24. Reed M., Simon B. (1977), Methods of modern mathematical physics, Mir, Moscow (in Russian).
  25. 25. Sayas F. J., Qiu T. (2015), The Costabel-Stephan system of Boundary Integral Equations in the Time Domain, Mathematics of Computation, 85, 2341–2364.10.1090/mcom3053
  26. 26. Schtainbah O. (2008), Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements, Springer Science.
  27. 27. Vavrychuk V. H. (2011), Numerical solution of mixed non-stationary problem of thermal conductivity in partially unbounded domain, Visnyk of the Lviv university, Series of Applied mathematics and informatics, 17, 62-72 (in Ukrainian).
DOI: https://doi.org/10.1515/ama-2016-0044 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 285 - 290
Submitted on: Jun 29, 2016
|
Accepted on: Dec 1, 2016
|
Published on: Dec 28, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Svyatoslav Litynskyy, Yuriy Muzychuk, Anatoliy Muzychuk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.