Have a personal or library account? Click to login
Modelling the Meshing of Cycloidal Gears Cover
Open Access
|Jun 2016

References

  1. 1. Bednarczyk S. (2013), Cycloidal gear development focused on the transfer of efficiency of the machines, In: Idzikowski A.: Efficiency of working machines and equipment in the industry, Press WZ PCz, Czestochowa, 117-225.
  2. 2. Bednarczyk S. (2014), Determination of the gear geometry of the of the cyclo gear, Silesia University of Technology Scientific Notebooks, Gliwice, 29-39.
  3. 3. Blagojevic M., Kocic M., Marjanovic N., Stojanovic B., Dordevic Z., Ivanovic L., Marjanovic V. (2012), Influence of the friction on the cycloidal speed reducer efficiency, Journal of the Balkan Tribological Association, 18(2), 217-227.
  4. 4. Chmurawa M. (2002), Cyclo gear meshing with modification, Silesia University of Technology Scientific Notebooks, Gliwice, No. 1547, 21-39.
  5. 5. Feng P. H., Litvin F. L. (1996), Computerize design and generation of cycloidal gearing, Mechanism and Machine Theory, 31 (7), 891-911.10.1016/0094-114X(95)00115-F
  6. 6. Figliolinii G., Stachel H., Angeles J. (2013), On Martin Disteli’s spatial cycloidal gearing, Mechanism and Machine Theory, 60, 73-89.10.1016/j.mechmachtheory.2012.09.005
  7. 7. Hong-Liu Y., Jin-Hua Y., Xin H., Ping S. (2013), Study on teeth profile modification of cycloid reducer based on non-Hertz elastic contact analysis, Mechanics Research Communications, 48, 87-92.10.1016/j.mechrescom.2012.12.007
  8. 8. Hwang Y.-W., Hsieh Ch.-F. (2007), Determination of surface singularities of a cycliodal gear drive with inner meshing, Mathematical and Computer Modelling, 45, 340-354.10.1016/j.mcm.2006.05.010
  9. 9. Kabaca T. (2013), A model teaching for the cycloid curves by the use of dynamic software with multiple representions approach, Academic Journals, Vol. 6(3), 40-50.
  10. 10. Meng Y., Wu Ch., Ling L. (2007), Mathematical modeling of the transmision performance of 2K-H pin cycloid planetary mechanism, Mechanism and Machine Theory, 42(7), 776-790.10.1016/j.mechmachtheory.2006.07.003
  11. 11. Rutkowski A. (1986), Machinery parts, WSiP, Warsaw, 323-325.
  12. 12. Shin J., Know S. (2006), On the lobe profile design in a cycloid reducer using instant velocity center, Mechanism and Machine Theory, 41(5), 487-616.10.1016/j.mechmachtheory.2005.08.001
  13. 13. Siczek K., Warda B. (2008), Using of cycloidal gear in car selfstarter, Journal of KONES Powertrain and Transport, 15(4), 509-516.
  14. 14. Sung L. M., Tsai Y.C. (1997), A study on the mathematical models and contact ratios of extended cycloid and cycloid bevel gear sets, Mechanism and Machine Theory, 32 (1), 39-50.10.1016/0094-114X(96)00032-8
  15. 15. Wang W.-S., Fong Z.-H. (2008), A dual face-hobbing method for the cycloidal crowning of spur gears, Mechanism and Machine Theory, 43(11), 1416-1430.10.1016/j.mechmachtheory.2007.11.007
  16. 16. Yan H. S., Lai T. S. (2002), Geometry design an elementary planetary gear train with cylindrical tooth-profiles, Mechanism and Machine Theory, 37(8), 683-686.10.1016/S0094-114X(02)00009-5
DOI: https://doi.org/10.1515/ama-2016-0022 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 137 - 140
Submitted on: Jun 16, 2015
Accepted on: May 16, 2016
Published on: Jun 8, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Jerzy Nachimowicz, Stanisław Rafałowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.