Have a personal or library account? Click to login
Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel Cover

Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel

By: Maciej Ryś  
Open Access
|Jun 2016

References

  1. 1. Abu Al Rub R.K, Voyiadjis G.Z. (2003), On the coupling of anisotropic damage and plasticity models for ductile materials, International Journal of Plasticity, 40, 2611-2643.10.1016/S0020-7683(03)00109-4
  2. 2. Baffie, N., Stolarz, J. and Magnin, T. (2000), Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel, Matériaux & Techniques, 5-6, 57-64.10.1051/mattech/200088050057
  3. 3. Beese A.M, Mohr D. (2011), Effect of stress triaxiality and lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, 59(7), 258-2600.10.1016/j.actamat.2010.12.040
  4. 4. Besson J., Cailletaud G., Chaboche J.-L., Forest S. (2010), Non-Linear Mechanics of Materials, Springer.10.1007/978-90-481-3356-7
  5. 5. Bonora N. (1997), A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, 58(1-2), 11-28.10.1016/S0013-7944(97)00074-X
  6. 6. Chaboche, J. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642-1693.10.1016/j.ijplas.2008.03.009
  7. 7. Cherkaoui M., Berveiller M., Lemoine X. (2000), Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, International Journal of Plasticity, 16, 1215-1241.10.1016/S0749-6419(00)00008-5
  8. 8. Cherkaoui M., Berveiller M., Sabar H. (1998), Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, 14, 7, 597-628.10.1016/S0749-6419(99)80000-X
  9. 9. Diani J.M, Sabar H., Berveiller M. (1995), Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels, International Journal of Engineering Science, 33, 1921-1934.10.1016/0020-7225(95)00045-Y
  10. 10. Diani J.M., Parks D.M. (1998), Effects of strain state on the kinetics of strain induced martensite in steels, Journal of the Mechanics and Physics of Solids, 46(9), 1613-1635.10.1016/S0022-5096(98)00001-5
  11. 11. Egner H., Skoczeń B. (2010), Ductile damage development in two-phase materials applied at cryogenic temperatures, International Journal of Plasticity, 26, 488-506.10.1016/j.ijplas.2009.08.006
  12. 12. Egner H., Skoczeń B., Ryś M. (2015a), Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures, International Journal of Plasticity, 64, 113-133.10.1016/j.ijplas.2014.08.005
  13. 13. Egner H., Skoczeń B., Ryś M. (2015b), Constitutive modeling of dissipative phenomena in austenitic metastable steels at cryogenic temperatures, Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, Advanced Structured Materials, 57, Springer International Publishing.10.1007/978-3-319-14660-7_3
  14. 14. Fischer F.D, Schlögl S.M. (1995), The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation, Mechanics of Materials, 21, 1-23.10.1016/0167-6636(94)00070-0
  15. 15. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T. (2000), A new view on transformation induced plasticity (TRIP), International Journal of Plasticity, 16(1-8), 723-748.10.1016/S0749-6419(99)00078-9
  16. 16. Fisher F.D., Reisner G. (1998), A criterion for the martensitic transformation of a microregion in an elastic-plastic material, Acta Materialia 46, 2095-2102.10.1016/S1359-6454(97)00374-1
  17. 17. Garion C., Skoczeń B. (2003), Combined Model of Strain – Induced Phase Transformation and Orthotropic Damage in Ductile Materials at Cryogenic Temperatures, International Journal of Damage Mechanics, 12(4), 331-356.10.1177/105678903036225
  18. 18. Hallberg H., Hakansson P., Ristinmaa M. (2010), Thermo-mechanically coupled model of diffusionless phase transformation in austenitic steel, International Journal of Solids and Structures, 47, 1580-1591.10.1016/j.ijsolstr.2010.02.019
  19. 19. Hallberg H., Hakansson P., Ristinmaa M. (2007), A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, International Journal of Plasticity, 23, 1213-1239.10.1016/j.ijplas.2006.11.002
  20. 20. Heung N.H., Chang G.L, Chang-Seok O., Tae-Ho L., Sung-Joon K., (2004), A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel, Acta Materialia, 52(17), 5203-5214.
  21. 21. Iwamoto T. (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. International Journal of Plasticity 20(4-5), 841-869.10.1016/j.ijplas.2003.05.002
  22. 22. Ju J. (1989), On Energy – Based Coupled Elastoplastic Damage Theories: Constitutives Modelling and Computational Aspects, International Journal of Solids and Structures, 25(7), 803-833.10.1016/0020-7683(89)90015-2
  23. 23. Kachanov L.M. (1958), On rupture time under condition of creep, Izvestia Akademi Nauk SSSR, Otd. Tekhn. Nauk., No. 8, 26-31 (in Russian).
  24. 24. Kintzel O., Khan S., Mosler J. (2010), A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024, International Journal of Fatigue, 32, 1984-1959.10.1016/j.ijfatigue.2010.07.001
  25. 25. Kubler R.F., Berveiller M., Buessler P. (2011), Semi phenomenological modeling of the behavior of TRIP steels, International Journal of Plasticity, 27, 299-327.10.1016/j.ijplas.2010.05.002
  26. 26. Le Pecheur, A. (2008), Fatigue thermique d’un acier inoxydable austénitique: influence de l’état de surface par une approche multi-échelles, PhD Thesis, École Centrale des Arts et Manufactures, École Centrale Paris.
  27. 27. Lemaitre H. (1992), A course on damage mechanics. Springer-Verlag, Berlin and New York.10.1007/978-3-662-02761-5
  28. 28. Levitas V.I., Idesman A.V., Olson G.B. (1999), Continuum modeling of strain-induced martensitic transformation at shear band intersections, Acta Materialia 47(1), 219-233.10.1016/S1359-6454(98)00314-0
  29. 29. Mahnken R., Schneidt A. (2010), A thermodynamics framework and numerical aspects for transformation-induced plasticity at large strains, Archives of Applied Mechanics, 80, 229-253.10.1007/s00419-009-0308-z
  30. 30. Murakami S. (2012), Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture, Springer: Dordrecht, Heidelberg, London, New York.10.1007/978-94-007-2666-6_1
  31. 31. Narutani T., Olson G.B., Cohen M. (1982), Constitutive flow relations for austenitic steels during strain-induced martensitic transformation, Journal de Physique, Colloque C4, 12, 43, 429-434.10.1051/jphyscol:1982465
  32. 32. Olson G.B., Cohen M. (1975) Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, 6A, 791-795.10.1007/BF02672301
  33. 33. Rabotnov Yu. N. (1968), Creep rupture. In: Hetenyi M., Vincenti M. (eds) Proceedings of applied mechanics conference. Stanford University. Springer, Berlin, 342-349.
  34. 34. Rabotnov Yu. N. (1969), Creep problems in structural members (North-Holland Series in Applied Mathematics and Mechanics). North-Holland Publishing Company, Amsterdam/London.
  35. 35. Ryś M. (2014), Constitutive modelling and identification of parameters of 316L stainless steel at cryogenic temperatures, Acta Mechanica et Automatica, 8, 3, 136-140.10.2478/ama-2014-0024
  36. 36. Ryś M. (2015), Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature, Archive of Mechanical Engineering, LXII, 4.10.1515/meceng-2015-0029
  37. 37. Saanouni K. (1988), On the cracking analysis of the elastoplastic media by the theory of continuum damage mechanics, PhD Thesis (in French), Universite de Technologie de Compiegne, France.
  38. 38. Saanouni K. (2012), Damage mechanics in metal forming: Advanced modeling and numerical simulation, ISTE/Wiley, London.10.1002/9781118562192
  39. 39. Saanouni K., Forster C., Ben Hatira F. (1994) On the anelastic flow with damage, International Journal of Damage Mechanics, 3, 140–169.10.1177/105678959400300203
  40. 40. Santacreu P.O., Glez J.C., Chinouilh G., Frohlich T. (2006), Behaviour model of austenitic stainless steels for automotive structural parts, Steel Research International, 77(9-10), 714.10.1002/srin.200606448
  41. 41. Skoczeń B., Bielski J., Tabin J. (2014), Multiaxial constitutive model of discontinuous plastic flow at cryogenic temperatures, International Journal of Plasticity, 55, 198-218.10.1016/j.ijplas.2013.09.004
  42. 42. Stolarz J., Baffie N., Magnin T. (2001), Fatigue short crack behavior in metastable austenitic stainless steels with different grain size, Materials Science and Engineering A, 319-321, 521-526.10.1016/S0921-5093(01)01072-3
  43. 43. Stringfellow, R.G., Parks, D.M., Olson, G.B. (1992) Constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metallurgica, 40, 7, 1703-171610.1016/0956-7151(92)90114-T
  44. 44. Suiker A.S.J., Turteltaub S. (2006), Crystalline damage development during martensitic transformation, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006.
  45. 45. Suiker A.S.J., Turteltaub S. (2007), Numerical modeling of transformation-induced damage and plasticity in metals. Modeling and Simulation in Materials Science and Engineering, 15, 147-166.10.1088/0965-0393/15/1/S13
  46. 46. Tomita Y, Iwamoto T. (1995) Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. International Journal of Mechanical Sciences, 37, 1295–1305.10.1016/0020-7403(95)00039-Z
  47. 47. Tomita Y., Iwamoto T. (2001) Computational prediction of deformation behavior of TRIP steels under cyclic loading. International Journal of Mechanical Sciences, 43(9), 2017-2034.10.1016/S0020-7403(01)00026-1
  48. 48. Ziętek G., Mróz Z. (2011), On the hardening rule for austenite steels accounting for the strain induced martensitic transformation, International Journal of Structural Changes in Solids, 3, 3, 21-34.
DOI: https://doi.org/10.1515/ama-2016-0020 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 125 - 132
Submitted on: May 4, 2015
Accepted on: May 13, 2016
Published on: Jun 8, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Maciej Ryś, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.