Have a personal or library account? Click to login
Accuracy of Spindle Units with Hydrostatic Bearings Cover

Accuracy of Spindle Units with Hydrostatic Bearings

Open Access
|Jun 2016

References

  1. 1. Fedorynenko D., Boyko S., Sapon S. (2015), The search of the spatial functions of pressure in adjustable hydrostatic radial bearing, Acta Mechanica et Automatica, 9(1), 23-26.10.1515/ama-2015-0005
  2. 2. Fedorynenko D., Sapon S., Boyko S.(2014), Considering of the thermal strains in determining the function of the radial clearance in hydrostatic bearing in high-speed spindle node, Technological systems, 2(10), 154-159.
  3. 3. Fedorynenko D., Sapon S., Boyko S., Kosmach A. (2015), Information-measuring complex for research of spindle trajectories on hydrostatic bearings, Scientific Bulletin of National Mining University: scientific journal, 6(150), 42-48.
  4. 4. Junpeng S., Guihua H., Yanqin Z., Yuhong D. (2008), Hardware-inthe-loop Simulation on Controllable Hydrostatic Thrust Bearing, IEEE International Conference on Automation and Logistics (ICAL 2008), 1095-1099.10.1109/ICAL.2008.4636314
  5. 5. Junpeng S., Yanqin Z., PengchengL. (2007), Static flow simulation of hydrostatic bearing ellipse and sector curve based on fluent, Lubrication Engineering, 1, 93−95.
  6. 6. Perovic B. (2012), Hydrostatic guides and bearings: basic principles, calculation and design of hydraulic plans (in German), Springer-Verlag Berlin Heidelberg.
  7. 7. Rubinstein R.Y. (2007), Simulation and the Monte Carlo Method, Kroese – 2nd edition, Wiley.10.1002/9780470230381
  8. 8. Sapon S.P.(2013), Methodology of experimental determination precisionspindle, Bulletin of Chernihiv State Technological University, A series of technical sciences, 1(63), 66-74.
  9. 9. Savin L.A. (2006), Simulation of rotor systems with fluid friction bearings, Moscow: Engineering.
  10. 10. Shen C.G., Wang G.C., Wang S.L. (2010), Computation and Analysis of Unbalancing Responses of High Speed Machining Tool System, Advanced Materials Research, 148-149(1), 40-46.10.4028/www.scientific.net/AMR.148-149.40
  11. 11. Solomin O.V.(2007), Development of methods and tools of dynamic analysis of rotor systems with fluid friction bearings, phd thesis, Orel State University.
  12. 12. Strutynsky V., Fedorynenko D. (2011), Statistical dynamics of spindle units for hydrostatic bearings, Nizhin: LLC “Publishing” Aspect-Polygraph.
  13. 13. Wardle F. (2015), Ultra Precision Bearings, Cambridge: Elsevier.
  14. 14. Xiaodong Y., Huaimin L. (2006), Computerized Simulation of Lubricating Characteristics of Circular Tilting Pad Thrust Bearing, Lubrication Engineering, 3, 84-87.
  15. 15. Xiaodong Y., Huaimin L., Xiurong G. (2007), Numerical Analysis of Lubricating Characteristics of Sector Thrust Bearing Pad, Lubrication Engineering, 1, 123-125.
  16. 16. Yu X.D., Zhang Y.Q. (2008), Numerical Simulation of Gap Flow of Sector Recess Multi-pad Hydrostatic Thrust Bearing, Proc. 2008 Asia Simulation Conference-7th Int. Conf. Simulation and Scientific Computing (ICSC 08), 675–679.
  17. 17. Yuan S., Lin J., Liu Q. (2008), Finite Element Analysis of Machine Tool as a Whole, Machine Tool & Hydraulics,36(4):17-18,49.
  18. 18. Zhao H., Yang J., Shen J.(2007), Simulation of thermal behaviour of a CNC machine tool spindle, International Journal of Machine Tool & Manufacture, 47(6), 1003-1010.10.1016/j.ijmachtools.2006.06.018
DOI: https://doi.org/10.1515/ama-2016-0019 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 117 - 124
Submitted on: Mar 2, 2015
Accepted on: May 13, 2016
Published on: Jun 8, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Dmytro Fedorynenko, Serhii Sapon, Sergiy Boyko, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.