Have a personal or library account? Click to login
The Use of Spectral Method for Fatigue Life Assessment for Non-Gaussian Random Loads Cover

The Use of Spectral Method for Fatigue Life Assessment for Non-Gaussian Random Loads

Open Access
|Jun 2016

References

  1. 1. Banvillet A., Łagoda T., Macha E., Niesłony A., Palin-Luc T., Vittori J.-F. (2004), Fatigue life under non-Gaussian random loading from various Models, International Journal of Fatigue, 26, 349–363.10.1016/j.ijfatigue.2003.08.017
  2. 2. Benasciutti D., Cristofori A., Tovo R. (2013) Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation, Probabilistic Engineering Mechanics, 31, 39–45.10.1016/j.probengmech.2012.12.002
  3. 3. Benasciutti D., Tovo R. (2005), Spectral methods for lifetime prediction under wide-band stationary random processes, International Journal of Fatigue, 27 867–877.10.1016/j.ijfatigue.2004.10.007
  4. 4. Benasciutti D., Tovo R. (2006) Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes, Probabilistic Engineering Mechanics, 21(4), 287–299.10.1016/j.probengmech.2005.10.003
  5. 5. Benasciutti D., Tovo R. (2010) On fatigue cycle distribution in non-stationary switching loadings with Markov chain structure, Probabilistic Engineering Mechanics, 25(4), 406-418.10.1016/j.probengmech.2010.05.002
  6. 6. Bendat J.S. (1964)., M.A. Corporation, U.S.N.A. and S. Administration, Probability functions for random responses: prediction for peaks, fatigue damage, and catastrophic failures, National Aeronautics and Space Administration.
  7. 7. Braccesi C., Cianetti F., Lori G., Pioli D. (2009), The frequency domain approach in virtual fatigue estimation of non-linear systems: The problem of non-Gaussian states of stress, International Journal of Fatigue, 31(4), 766–775.10.1016/j.ijfatigue.2008.03.007
  8. 8. Chaudhury G., Dover W. (1985), Fatigue analysis of offshore platforms subject to sea wave loadings, International Journal of Fatigue, 7, 13–19.10.1016/0142-1123(85)90003-9
  9. 9. Dirlik T. (1985), Application of computers in fatigue analysis, phd thesis, University of Warwick.
  10. 10. Hancock J., D. Gall (1985), Fatigue under narrow and broad band stationary loading, Marine Technology Directorate Ltd.
  11. 11. Łagoda T., Macha E., Pawliczek R. (2001), The influence of the mean stress on fatigue life of 10HNAP steel under random loading, International Journal of Fatigue, 23, 283–291.10.1016/S0142-1123(00)00108-0
  12. 12. Lalanne C. (2013), Mechanical Vibration and Shock Analysis, Fatigue Damage, John Wiley & Sons.
  13. 13. Lutes L.D. (1996), Stochastic Analysis of Structural and Mechanical Vibrations, 1st edition, Prentice Hall, Upper Saddle River, N.J.
  14. 14. Niesłony A., Böhm M. (2012), Mean Stress Value in Spectral Method for the Determination of Fatigue Life, Acta Mechanica et Automatica, 6, 71–74.
  15. 15. Niesłony A., Böhm M. (2015), Mean Stress Effect Correction in Frequency-domain Methods for Fatigue Life Assessment, Procedia Engineering,12(101), 347-354.10.1016/j.proeng.2015.02.042
  16. 16. Pawliczek R., Kluger K. (2013) Influence of the irregularity coefficient of loading on calculated fatigue life, Journal of Theoretical and Applied Mechanics, 51(4), 791-798.
  17. 17. Rice S.O. (1944), Mathematical Analysis of Random Noise, Bell SystemTechnical Journal, 23 282–332.10.1002/j.1538-7305.1944.tb00874.x
  18. 18. Steinberg D.S. (2000), Vibration Analysis for Electronic Equipment, 3 edition, Wiley-Interscience, New York.
  19. 19. Tunna J.M. (1986), Fatigue Life Prediction for Gaussian Random Loads at the Design Stage, Fatigue & Fracture of Engineering Materials & Structures, 9, 169–184.10.1111/j.1460-2695.1986.tb00444.x
  20. 20. Wolfsteiner P., Breuer W. (2013) Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities, Journal of Sound snd Vibration, 332(22), 5867-5882.10.1016/j.jsv.2013.06.012
  21. 21. Wolfsteiner P., Sedlmair S. (2015), Deriving Gaussian Fatigue Test Spectra from Measured non Gaussian Service Spectra, Procedia Engineering, 101, 543 – 551.10.1016/j.proeng.2015.02.065
  22. 22. Zhao W., Baker M. (1992), On the probability density function of rainflow stress range for stationary Gaussian processes, International Journal of Fatigue, 14 (2), 121–135.10.1016/0142-1123(92)90088-T
DOI: https://doi.org/10.1515/ama-2016-0016 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 100 - 103
Submitted on: May 4, 2015
Accepted on: May 12, 2016
Published on: Jun 8, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Adam Niesłony, Michał Böhm, Tadeusz Łagoda, Filippo Cianetti, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.