Have a personal or library account? Click to login
Boundary Integral Equations for an Anisotropic Bimaterial with Thermally Imperfect Interface and Internal Inhomogeneities Cover

Boundary Integral Equations for an Anisotropic Bimaterial with Thermally Imperfect Interface and Internal Inhomogeneities

Open Access
|Mar 2016

References

  1. 1. Benveniste Y. (2006), A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids, 54, 708–734.10.1016/j.jmps.2005.10.009
  2. 2. Chen T. (2001), Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids. Struct., 38, 3081–3097.
  3. 3. Hwu C. (1992), Thermoelastic interface crack problems in dissimilar anisotropic media, Int. J. Solids. Struct., 18, 2077–2090.
  4. 4. Hwu C. (2010), Anisotropic elastic plates, Springer, London.10.1007/978-1-4419-5915-7
  5. 5. Jewtuszenko O., Adamowicz F., Grześ P., Kuciej M., Och E. (2014) Analytic and numerical modeling of the process of heat transfer in parts of disc of the brake systems, Publishing House of BUT (in Polish).
  6. 6. Kattis M. A., Mavroyannis G. (2006), Feeble interfaces in bimaterials, Acta Mech., 185, 11–29.
  7. 7. Muskhelishvili N.I. (2008), Singular integral equations, Dover publications, New York.
  8. 8. Pan E., Amadei B. (1999), Boundary element analysis of fracture mechanics in anisotropic bimaterials, Engineering Analysis with Boundary Elements, 23, 683–691.10.1016/S0955-7997(99)00018-1
  9. 9. Pasternak Ia. (2012), Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity, Engineering Analysis with Boundary Elements, 36(12), 1931–1941.10.1016/j.enganabound.2012.07.007
  10. 10. Pasternak Ia., Pasternak R., Sulym H. (2013a), A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements, 37, No. 2, 419–433.10.1016/j.enganabound.2012.11.002
  11. 11. Pasternak Ia., Pasternak R., Sulym H. (2013b), Boundary integral equations for 2D thermoelasticity of a half-space with cracks and thin inclusions, Engineering Analysis with Boundary Elements, 37, 1514–1523.10.1016/j.enganabound.2013.08.008
  12. 12. Pasternak Ia., Pasternak R., Sulym H. (2014), Boundary integral equations and Green’s functions for 2D thermoelectroelastic bimaterial, Engineering Analysis with Boundary Elements, 48, 87–101.10.1016/j.enganabound.2014.06.010
  13. 13. Qin Q.H. (2007), Green’s function and boundary elements of multifield materials, Elsevier, Oxford.
  14. 14. Sulym H.T. (2007), Bases of mathematical theory of thermo-elastic equilibrium of solids containing thin inclusions, Research and Publishing center of NTSh, 2007 (in Ukrainian).
  15. 15. Sulym H.T., Pasternak Ia., Tomashivskyy M. (2014), Boundary element analysis of anisotropic thermoelastic half-space containing thin deformable inclusions, Ternopil Ivan Puluj National Technical University, 2014 (in Ukrainian).
  16. 16. Ting T.C.T. (1996), Anisotropic elasticity: theory and applications, Oxford University Press, New York.10.1093/oso/9780195074475.001.0001
  17. 17. Wang X., Pan E. (2010), Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect intrface, Acta Mech., 209, 115–128.
  18. 18. Yevtushenko A. A., Kuciej M. (2012), One-dimensional thermal problem of friction during braking: The history of development and actual state, International Journal of Heat and Mass Transfer, 55, 4148–4153.10.1016/j.ijheatmasstransfer.2012.03.056
DOI: https://doi.org/10.1515/ama-2016-0012 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 66 - 74
Submitted on: May 4, 2015
Accepted on: Feb 26, 2016
Published on: Mar 7, 2016
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Heorhiy Sulym, Iaroslav Pasternak, Mykhailo Tomashivskyy, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.