Have a personal or library account? Click to login
Some Considerations on an Underwater Robotic Manipulator Subjected to the Environmental Disturbances Caused by Water Current Cover

Some Considerations on an Underwater Robotic Manipulator Subjected to the Environmental Disturbances Caused by Water Current

Open Access
|Mar 2016

References

  1. 1. ANSYS Inc. (2015), ANSYS FLUENT Theory Guide, Release 16.0, Canonsburg, USA.
  2. 2. Antonelli G. (2006), Underwater Robots (Springer Tracts in Advanced Robotics), Second edition, Springer.
  3. 3. Bettle M.C., Gerber A.G., Watt G.D. (2014), Using reduced hydrodynamic models to accelerate the predictor-corrector convergence of implicit 6-DOF URANS submarine manoeuvring simulations, Computers & Fluids, 102, 215-236.10.1016/j.compfluid.2014.02.023
  4. 4. Fossen T.I. (1994), Guidance and Control of Ocean Vehicles, John Wiley & Sons, Chichester, United Kingdom.
  5. 5. Herman P. (2009), Decoupled PD set-point controller for underwater vehicles, Ocean Engineering, 36, 529–534.10.1016/j.oceaneng.2009.02.003
  6. 6. Joung T.-H., Choi H.-S., Jung S.-K., Sammut K., He F. (2014), Verification of CFD analysis method for predicting the drag force and thrust power of an underwater disc robot, International Journal of Naval Architecture and Ocean Engineering, 6, 269-28110.2478/IJNAOE-2013-0178
  7. 7. Kumar M.S., Raja S.C., Kumar M.N.S, Gowthamraj B. (2015), A synergic approach to the conceptual design of Autonomous Underwater Vehicle, Robotics and Autonomous Systems, 67, 105-114.10.1016/j.robot.2014.09.010
  8. 8. Leabourne K.N., Rock S.M. (1998), Model Development of an Underwater Manipulator for Coordinated Arm-Vehicle Control, Proceedings of the OCEANS 98 Conference, Nice, France, 2, 941-946.
  9. 9. Luo W., Lyu W. (2015), An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots, Ocean Engineering, 104, 686-697.10.1016/j.oceaneng.2015.06.011
  10. 10. McLain T.W., Rock S.M. (1998), Development and Experimental Validation of an Underwater Manipulator Hydrodynamic Model, The International Journal of Robotics Research, 17, 748–759.10.1177/027836499801700705
  11. 11. Pazmino R. S., Garcia Cena C.E., Alvarez Arocha C., Santoja R.A. (2011), Experiences and results from designing and developing a 6DoF underwater parallel robot, Robotics and Autonomous System, 59, 101-112.10.1016/j.robot.2010.10.005
  12. 12. Richard M.J., Levesque B. (1996), Stochastic dynamic modelling of an open-chain manipulator in a fluid environment, Mechanism and Machine Theory, 31(5), 561-572.10.1016/0094-114X(95)00105-8
  13. 13. Santhakumar M., Kim J. (2012), Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks, Ocean Engineering, 54, 233-243.10.1016/j.oceaneng.2012.07.022
  14. 14. Vossoughi G.R., Meghdari A., Borhan H. (2004), Dynamic modeling and robust control of an underwater ROV equipped with a robotic manipulator arm, Proceedings of 2004 JUSFA, @004 Japan-USA Symposium on Flexible Automation, Denver, Colorado.
  15. 15. Wang Z. (2012), An interactive virtual prototyping platform considering environment effect described by fluid dynamics, Robotics and Computer-Integrated Manufacturing, 28, 316-325.10.1016/j.rcim.2011.10.001
  16. 16. Zhang S., Yu J., Zhang A., Zhang F. (2013), Spiraling motion of underwater gliders: Modeling, analysis, and experimental results, Ocean Engineering, 60, 1-13.10.1016/j.oceaneng.2012.12.023
DOI: https://doi.org/10.1515/ama-2016-0008 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 43 - 49
Submitted on: Jul 31, 2015
|
Accepted on: Feb 22, 2016
|
Published on: Mar 7, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Waldemar Kołodziejczyk, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.