Have a personal or library account? Click to login
Accelerated Determination of Fatigue Limit and S-N Curve by Means of Thermographic Method for X5CrNi18-10 Steel Cover

Accelerated Determination of Fatigue Limit and S-N Curve by Means of Thermographic Method for X5CrNi18-10 Steel

By: Adam Lipski  
Open Access
|Mar 2016

References

  1. 1. Amiri M., Khonsari M.M. (2010a), Life prediction of metals undergoing fatigue load based on temperature evolution, Materials Science and Engineering A, Vol. 527, No. 6, 1555–1559.10.1016/j.msea.2009.10.025
  2. 2. Amiri M., Khonsari M.M. (2010b), Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load, International Journal of Fatigue, Vol. 32, No. 2, 382–389.10.1016/j.ijfatigue.2009.07.015
  3. 3. Cura F., Curti G., Sesana R. (2005), A new iteration method for the thermographic determination of fatigue limit in steels, International Journal of Fatigue, Vol. 27, No. 4, 453–459.
  4. 4. Doudard C., Poncelet M., Calloch S., Boue C., Hild F., Galtier A. (2007), Determination of an HCF criterion by thermal measurements under biaxial cyclic loading, International Journal of Fatigue, Vol. 29, No. 4, 748–757.
  5. 5. Fargione G., Geraci A., La Rosa G., Risitano A. (2002), Rapid determination of the fatigue curve by the thermographic method, International Journal of Fatigue, Vol. 24, No. 1, 11–19.
  6. 6. Galietti U., Palumbo D., De Finis R., Ancona F. (2014), Fatigue limit evaluation of martensitic steels with thermal methods. The 12th International Conference of Quantitative Infrared Thermography, QIRT, Bordeaux.10.21611/qirt.2014.105
  7. 7. Golański G., Mroziński S. (2012), Fatigue life of GX12CrMoVNbN9 -1 cast steel in the energy-based approach, Advanced Materials Research, Vols. 396-398, 446-449.
  8. 8. Kaleta J. (1998), The experimental foundations of energetical fatigue hypothesis folmulation, Wrocław University of Technology, Wrocław (in Polish).
  9. 9. Kordatos E.Z., Dassios K.G., Aggelis D.G., Matikas T.E. (2013), Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission, Mechanics Research Communications, Vol. 54, 14–20.
  10. 10. La Rosa G., Risitano A. (2000), Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, International Journal of Fatigue, Vol. 22, No. 1, 65–73.
  11. 11. Li X.D., Zhang H., Wu D.L., Liu X., Liu J.Y. (2012), Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress, International Journal of Fatigue, Vol. 36, No. 1,18–23.
  12. 12. Lipski A. (2014a), Impact of the Strain Rate During Tension Test on 46Cr1 Steel Temperature Change, Key Engineering Materials, Vol. 598, 133-140.10.4028/www.scientific.net/KEM.598.133
  13. 13. Lipski A. (2014b), Determination of Fatigue Limit by Locati Method using S-N Curve Determined by Means of Thermographic Method, Solid State Phenomena, Vol. 223, 362-373.10.4028/www.scientific.net/SSP.223.362
  14. 14. Lipski A., Boroński D. (2012), Use of Thermography for the Analysis of Strength Properties of Mini-Specimens, Materials Science Forum, Vol. 726, 156-161.
  15. 15. Lipski A., Skibicki D. (2012), Variations Of The Specimen Temperature Depending On The Pattern Of The Multiaxial Load - Preliminary Research, Materials Science Forum, Vol. 726, 162-168.
  16. 16. Litwinko R., Oliferuk W. (2009), Yield Point Determination Based On Thermomechanical Behaviour Of Polycrystalline Material Under Uniaxial Loading, Acta Mechanica et Automatica, Vol. 3, No. 4, 49-51.
  17. 17. Luong M.P. (1995), Infrared thermographic scanning of fatigue in metals, Nuclear Engineering and Design, Vol. 158, No. 2-3, 363-376.
  18. 18. Luong M.P. (1998), Fatigue limit evaluation of metals using an infrared thermographic technique, Mechanics of Materials, Vol. 28, No. 1, 155–163.
  19. 19. Poncelet M., Doudard C., Calloch S., Weber B., Hild F. (2010), Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue, Journal of Mechanics and Physics of Solids, Vol. 58, No. 4, 578–593.
  20. 20. Skibicki D., Sempruch J., Lipski A., Pejkowski Ł. (2013), Fatigue Life, Fractographic and Thermographic Analysis of Steel X2CrNiMo17-12-2 for Proportional and Non-Proportional Loads, The Tenth International Conference on Multiaxial Fatigue & Fracture, Kyoto (Japan).
DOI: https://doi.org/10.1515/ama-2016-0004 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 22 - 27
Submitted on: May 8, 2015
|
Accepted on: Feb 8, 2016
|
Published on: Mar 7, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Adam Lipski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.