Have a personal or library account? Click to login
Cyclic Linear Random Process As A Mathematical Model Of Cyclic Signals Cover

Cyclic Linear Random Process As A Mathematical Model Of Cyclic Signals

Open Access
|Dec 2015

References

  1. 1. Yurekli K., Kurunc A., Ozturk F., (2005) Application of linear stochastic models to monthly flow data of Kelkit Stream, Ecological Modelling, 183 (1), 67–75.10.1016/j.ecolmodel.2004.08.001
  2. 2. Blake I., Thomas J. (1968), The Linear Random Process, Proc. Of IEEE, 56 (10) 1696–1703.
  3. 3. Bartlett M. (1955), An introduction to stochastic processes with special reference to methods and applications, Cambridge University Press.
  4. 4. Medvegyev P. (2007), Stochastic Integration Theory, Oxford University Press, New York.
  5. 5. Bhansali R. (1993), Estimation of the impulse response coefficients of a linear process with infinite variance, Journal of Multivariate Analysis, 45, 274-290.10.1006/jmva.1993.1039
  6. 6. Giraitis L. (1985), Central limit theorem for functionals of a linear process, Lithuanian Mathematical Journal, 25, 25–35.10.1007/BF00966294
  7. 7. Olanrewaju J., Al-Arfaj M. (2005), Development and application of linear process model in estimation and control of reactive distillation, Computers and Chemical Engineering, 30, 147–157.10.1016/j.compchemeng.2005.08.007
  8. 8. Bartlett M. (1950) Periodogram Analysis and Continuous Spectra, Biometrika, 37(1/2), 1–16.10.1093/biomet/37.1-2.1
  9. 9. Martchenko B. (1998) Concerning on a theorem for periodic in Slutskiy sense linear random processes, International Congress of Mathematicians, Berlin.
  10. 10. Zvarich V., Marchenko B. (2011), Linear autoregressive processes with periodic structures as models of information signals, Radioelectronics and Communications Systems, 54(7), 367–372.10.3103/S0735272711070041
  11. 11. Pagano M. (1978), On periodic and multiple autoregressions, The Annals of Statistics, 6, 1310–1317.10.1214/aos/1176344376
  12. 12. Lupenko S. (2006), Deterministic and random cyclic function as a model of oscillatory phenomena and signals: the definition and classification, Electronic Modeling, Institute of modeling problems in power of H.E Pukhov NAS, 28, 29–45.
  13. 13. Naseri H., Homaeinezhad M.R., Pourkhajeh H., (2013), Noise/spike detection in phonocardiogram signal as a cyclic random process with non-stationary period interval, Computers in Biology and Medicine, 43, 1205–1213.10.1016/j.compbiomed.2013.05.02023930815
  14. 14. Berkes I., Horváth L., (2006), Convergence of integral functionals of stochastic processes, Econometric Theory, 22, 304–322.10.1017/S0266466606060130
  15. 15. Protter P.E., (2005), Stochastic integration and differential equations, Second edition, New York.10.1007/978-3-662-10061-5
  16. 16. Gardner W., Napolitano A., Paura L., (2006) Cyclostationarity: Half a century of research, Signal Processing, 86, 639–697.10.1016/j.sigpro.2005.06.016
  17. 17. Hurd H., Miamee A. (2006), Periodically Correlated Random Sequences, Spectral Theory and Practice, Wiley, New York.10.1002/9780470182833
DOI: https://doi.org/10.1515/ama-2015-0035 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 219 - 224
Submitted on: Apr 21, 2015
Accepted on: Dec 14, 2015
Published on: Dec 30, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Sergiy Lupenko, Nadiia Lutsyk, Yuri Lapusta, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.