Have a personal or library account? Click to login
Fluidic Generator Of Microbubbles – Oscillator With Gas Flow Reversal For A Part Of Period Cover

Fluidic Generator Of Microbubbles – Oscillator With Gas Flow Reversal For A Part Of Period

By: Václav Tesař  
Open Access
|Dec 2015

References

  1. 1. Allouch A., Bourmine K., Monmayrant A., Gauthier-Lafaye o., Geoffroy S., Guo A.-M., Joseph P. (2014), Microbubbles for optofluidics: controlled defects in bubble crystals, Microfluidics and Nanofluidics, 549-560.10.1007/s10404-014-1339-5
  2. 2. Al-Mashhadani M.K.H., Wilkinson S.J., Zimmerman W.B. (2015), Airlift bioreactor for biological applications with microbubble mediated transport processes, Chemical Engineering Science, Vol. 137, 243-253.
  3. 3. Al-Mashhadani M.K.H., Bandulasena H.C.H., Zimmerman W.B. (2012), CO2 mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation, Industrial and Engineering Chemistry Research, Vol. 51, 1864-1877.
  4. 4. Bogdevich V.G., Evseev A.R,., Mljuga A.G., Migirenko G. S. (1978), Gas saturation effect on near-wall turbulence characteristics, Proc of 2nd International Conference on Drag Reduction, Cambridge, BHRA, 25-34.
  5. 5. Coward T., Lee J. G. M., Caldwell G.S. (2015), The effect of bubble size on the efficiency and economics of harvesting microalgae by foam flotation, Journal of Applied Phycology, Vol. 27, 733-742.
  6. 6. Demirbas A., Demirbas M.F. (2011) Importance of algae oil as a source of biodiesel, Energy Conversion and Management, Vol. 52, 163-170.
  7. 7. Hanotu J., Bandulasena H.C.H., Zimmerman W.B. (2012), Microflotation performance for algal separation, Biotechnology and Bioengineering, Vol. 109, 1663-1673.
  8. 8. Hanotu J., Bandulasena H.C.H., Chiu T. Y., Zimmerman W.B. t(2013), Oil emulsion separation with fluidic oscillator generated microbubbles, International Journal of Multiphase Flow, Vol. 56, 119-l125.
  9. 9. Hashimoto M., Mayers B., Garstecki P., Whitesides G. M. (2006), Flowing lattices of bubbles as tunable, self-assembled diffracting gratings, Small, Vol. 2, 1292-1298
  10. 10. Hu X., Liu B., Zhou J., Jin R. Qiao S., Liu G. (2015), CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system, Environmental Science and Technology, Vol. 49, 10710-10717.
  11. 11. James A., Vukasinovic B., Smith M. K., Glezer A, (2003), Vibration-induced drop atomization and bursting, Journal of Fluid Mechanics, Vol. 476, 1-28.
  12. 12. Jones S.M.J., Harrison S.T.L. (2014), Aeration energy requirements for lipid production by Scenedesmus sp. in airlift bioreactors, Algal Research, Vol. 5, 249-257.10.1016/j.algal.2014.03.003
  13. 13. Kanagawa T. (2013), Focused ultrasound propagation in water containing many therapeutical microbubbles, Paper OS6-04-4, Proc. of FLUCOME 2013, 12th Intern. Conf., Nara, Japan
  14. 14. Kargbo D.M. (2010), Biodiesel production from municipal sewage sludges, Energy and Fuels, Vol. 24, 2791-2797.
  15. 15. Kooiman K., Foppen-Harteveld M., Der Steen A.F.W.V., De Jong N.(2011), Sonoporation of endothelial cells by vibrating targeted microbubbles, Journal of Controlled Release, Vol. 154, 35-41..10.1016/j.jconrel.2011.04.00821514333
  16. 16. Kuznetsova L.A., Coakley W.T. (2007), Applications of ultrasound streaming and radiation force in biosensors, Biosensors and Bioelectronics, Vol. 22, 1567-1572.
  17. 17. Lam M.K., Lee K.T, (2012) Microalgae biofuels: a critical review of issues, problems and the way forward, Biotechnology Advances, Vol. 30, 673-678.
  18. 18. Lee J.H., Lee K. H., Won J. M., Rhee K., Chung S. K. (2012), Mobile oscillating bubble actuated by AC-electrowetting-on-dielectric for microfluidic mixing enhancement, Sensors and Actuators A: Physical, Vol. 182, 153-162.
  19. 19. Leite G.B., Abdelaziz A.E., Hallenbeck P.C. (2013), Algal biofuels: challenges and opportunities, Bioresource Technology, Vol. 145, 134-139.
  20. 20. Madavan N.K., Deutsch S., Merkle C. L. (1984), Reduction of turbulent skin friction by microbubbles, Physics of Fluids, Vol.27, 356-363.
  21. 21. McCormick M.E, Bhattacharyya R. (1973), Drag reduction of a submersible hull by electrolysis, Naval Engineers Journal, Vol. 85, 2973-2978.
  22. 22. Moriguchi Y., Kato H. (2002), Influence of microbubble diameter and distribution on frictional resistance reduction, Journal of Marine Science and Technology, Vol. 7, 79-85.
  23. 23. Oh J.S., Kwon Y. S., Lee K. H., Jeong W., Chung S. K., Rhee K. (2014), Drug perfusion enhancement in tissue model by steady streaming induced by oscillating micro-bubbles, Computers in Biology and Medicine, Vol. 44, 37-43
  24. 24. Pang M.J., Wei J.J., Yu B. (2014), Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel, Ocean Engineering, Vol. 81, 58-64.
  25. 25. Prevenslik T. (2011), Stability of nanobubbles by quantum mechanics, Proceedings of conference ‘Topical Problem of Fluid Mechanics’, Prague, 113-116.
  26. 26. Rawat I., Ranjith Kumar R., Mutanda T., Bux F. (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Applied Energy, Vol. 88, 3411-3424.
  27. 27. Rehman F., Medley G. J. D., Bandulasena H.C.H., Zimmerman W. B. (2015) Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants, Environmental Research, Vol.137, 32-39.
  28. 28. Rodríguez-Rodríguez J., Sevilla A., Martinez-Bazán C., Gordillo J. M. (2015), Generation of microbubbles with applications to industry and medicine, Annular Review of Fluid Mechanics, 405-429.10.1146/annurev-fluid-010814-014658
  29. 29. Shams M.M., Dong M., Mahinpey N. (2014), Friction factor of microbubbles in capillary tubes at low Reynolds numbers, Chemical Engineering Science, Vol.112, 72-77.
  30. 30. Sun R.R., Noble M. L., Sun S. S., Song S., Miao C. H. (2014), Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery, Journal of Controlled Release, Vol. 182, 111-120.
  31. 31. Terasaka K., Hirabayashi A., Nishino T., Fujioka S., Kobayashi D. (2011), Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chemical Engineering Science, Vol. 66, 3172-3179.
  32. 32. Tesař V., Tippetts J. R., Allen R. W. K., Low Y.-Y. (2005), Subdynamic asymptotic behavior of microfluidic valves, Journal of Microelectromechanical Systems, Vol. 14, 335-347.
  33. 33. Tesař V. (2007), Configurations of fluidic actuators for generating hybrid-synthetic jet, Sensors and Actuators A: Physical, Vol. 138, 394-403.
  34. 34. Tesař V. (2007), Fluidics applied to generating small aeration bubbles, Proc. of 9th Int. Symp. FLUCOME 2007, Tallahassee, FLA USA.
  35. 35. Tesař V. (2009) Fluidic control of reactor flow – Pressure drop matching, Chemical Engineering Research and Design, Vol. 87, 817-832.
  36. 36. Tesař V. (2009), Enhancing impinging heat or mass transgfer by fluidically generated flow pulsation, Chemical Engineering Research and Design, Vol. 87, 181-192.
  37. 37. Tesař V. (2010), No-moving-part valve for automatic flow switching, Chemical Engineering Journal, Vol. 162, 278-295.
  38. 38. Tesař V. (2013), Microbubble smallness limited by conjunctions, Chemical Engineering Journal, Vol. 231, 526-536.
  39. 39. Tesař V. (2014), Microbubble generator excited by fluidic oscillators´s third harmonic frequency, Chemical Engineering Research and Design, Vol. 92, 1603-1615.
  40. 40. Tesař V. (2014a) New concept: Low-pressure wide-angle atomiser, Chemical Engineering and Processing: Process Intensification, Vol. 82, 19-29.10.1016/j.cep.2014.05.004
  41. 41. Tesař V. (2014b), Shape oscillation of microbubbles, Chemical Engineering Journal, Vol. 235, 368-378.10.1016/j.cej.2013.09.027
  42. 42. Tesař V. (2015), Fluidic generator of microbubbles (in Czech), Czech Rep. Patent Application, PV 2015-204 filed March 2015.
  43. 43. Tesař V., Hung C.-H., Zimmerman W.B.J. (2006), No-moving-part hybrid-synthetic jet actuator, Sensors and Actuators, A: Physical, Vol. 125, 159-169.
  44. 44. Tesař V., Zhong S. (2003), Efficiency of Synthetic Jet Generation, Transactions of the Aeronautical and Astronautical Society of the Republic of China, Zhongguo Hangkong Taikong Xuehui Huikan, Vol. 35, 45-53.
  45. 45. Tesař V., Zhong S., Fayaz R. (2013) New fluidic oscillator concept for flow separation control, AIAA Journal, Vol. 51, 397-405
  46. 46. Trávníček Z., Tesař V., Kordk J. (2007), Performance of synthetic jet actuators based on hybrid and double-acting principles, Journal of Visualization, Vol.11, 221-l220.
  47. 47. Tremblay-Darveau C., Williams R., Burns P.N. (2014), Measuring absolute blood pressure using microbubbles, Ultrasound in Medicine and Biology, Vol. 40, 775-781.
  48. 48. Tsuge H., Li P., Shimatani N., Shimamura Y., Nakata H., Ohira M. (2009) Fundamental study on disinfection effect of microbubbles, Kagaku Kogaku Ronbunshu, Vol. 35, 548-552.
  49. 49. Wang C., Yalikop S. V., Hilgenfeldt S. (2012), Efficient manipulation of microparticles in bubble streaming flows, Biomicrofluidics, Vol. 6, 012801
  50. 50. Watanabe O., Masuko A., Shirose Y. (1998), Measurements of drag reduction by microbubbles using very long ship models, Journal of Soc. Naval Architects, Vol. 183, 53-59.10.2534/jjasnaoe1968.1998.53
  51. 51. Watanabe Y., Aoi A., Horie S., Tomita N., Mori S., Morikawa H., Matsumura Y., Vassaux G., Kodama T. (2008), Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin, Cancer Science, Vol. 99, 2525-2531.
  52. 52. Wataneabe K., (2013), Washing effect of microbubbles, Paper OS1-01-1, Proc. of FLUCOME 2013, 12th Intern. Conf., Nara, Japan, November 2013
  53. 53. Xi X. (2012), Controlled translation and oscillation of microbubbles near a surface in an acoustic standing wave field, PhD Thesis, Mechanical Engineering Department, Imperial College London.
  54. 54. Yanuar, Gunawan, Sunaryo, Jamaluddin A. (2012), Micro-bubble drag reduction on a high-speed vessel model, Journal of Marine Science and Technology, Vol. 17, 301-304.
  55. 55. Zimmerman W.B., Tesař V., Butler S., Bandulasena H.C.H. (2008), Microbubble generation, Recent Patents in Engineering, Vol. 2, 1-8
  56. 56. Zimmerman W.B., Al-Mashhadani M.K.H., Bandulasena H.C.H. (2013) Evaporation dynamics of microbubbles, Chemical Engineering Science, Vol. 101, 865-877.
  57. 57. Zimmerman W.B., Zandi M., Bandulasena H.C.H. (2011), Towards energy efficient nanobubble generation with fluidic oscillation, Current Opinion in Colloid & Interface Science, Vol. 16, 350-356.
  58. 58. Zimmerman W.B., Zandi M., Bandulasena H.C.H., Tesa5 V., Gilmour J.D., Ying K. (2011), Design of an airlift bioreactor and pilot scale studies with fluidic oscillator induced micro bubbles for growth of a microalgae Dunaliella Salina, Applied Energy, Vol. 88, 3357-3369.
DOI: https://doi.org/10.1515/ama-2015-0032 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 195 - 203
Submitted on: Jun 10, 2015
Accepted on: Dec 14, 2015
Published on: Dec 30, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Václav Tesař, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.