1. Cartmell M. P., Lawson J. (1994), Performance enhancement of an autoparametric vibration absorber by means of computer control, Journal of Sound and Vibration, 17(2), 173–195.10.1006/jsvi.1994.1426
2. Doedel E., Oldeman B., Champneys A., Dercole F., Fairgrieve, Kuznetsov Y., Paenroth R., Sandstede B., Wang X., Zhang C. (2011), AUTO-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University (Montreal, Canada, 2011).
3. Falk F. (1980), Model free energy mechanics and thermodynamics of shape memory alloys, Acta Metallurgica, 28, 1773–1780.10.1016/0001-6160(80)90030-9
4. Gu L., Livermore C. 2010), Pendulum-Driven Passive Self-Tuning Energy Harvester for Rotating Applications, Presented at Power MEMS Workshop, Leuven, Belgium.
6. Kaynia A. M., Veneziano D., Biggs J. M. (1981), Seismic effectiveness of tuned mass dampers, Journal of Structural Engineering, 107(8), 1465–1484.10.1061/JSDEAG.0005760
7. Kecik K. (2015), Dynamics and control of an autoparametric system, International Journal of Non-linear Mechanics, 70, 63-72.10.1016/j.ijnonlinmec.2014.11.028
8. Kecik K., Borowiec M. (2013), An autoparametric energy harvester, Th Europen Physical Journal Special Topics, 222(7), 1597–1605.10.1140/epjst/e2013-01948-2
9. Kecik K., Mitura A., Sado D., Warminski J. (2014), Magnetorheological damping and semi-active control of an auto-parametric vibration absorber, Meccanica, 49(8), 1887-1900.10.1007/s11012-014-9892-2
10. Lacarbonara W. (2012), Nonlinear dynamics enabled systems design and control, Journal of Physics: Conference Series, 382, ID 012001, 1-9.10.1088/1742-6596/382/1/012001
11. Liao G. J., Gong X. L., Kang C. J., Xuan S. H. (2011), The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance, Smart Material Structure, 20, ID 075015, 1-11.10.1088/0964-1726/20/7/075015
12. Ma T. W., Zhang H., Xu N. S. 2012), A novel parametrically excited non-linear energy harvester, Mechanical Systems and Signal Processing, 28, 323–332.
13. Oueini S. S., Nayfeh A. H., Golnaraghi M. F. A. (1997), A theoretical and experimental implementation of a control method based on saturation, Nonlinear Dynamics, 13, 189-202.10.1023/A:1008207124935
15. Sladek J. R., Klingner R. E. (1983), Effect of tuned mass dampers on seismic response, Journal of the Structural Division, 109, 2004–2009.10.1061/(ASCE)0733-9445(1983)109:8(2004)
16. Soto-Brito R., Ruiz S. E. (1999), Influence of ground motion intensity on the effectiveness of tuned mass dampers, Earthquake Engineering and Structural Dynamics, 28, 1255–1271.10.1002/(SICI)1096-9845(199911)28:11<;1255::AID-EQE865>3.0.CO;2-C
17. Vazquez-Gonzalezal B, Silva-Navarro G. (2008), Evaluation of the autoparametric pendulum vibration absorber for a Duffing system, Shock and Vibration, 15, 355–368.10.1155/2008/827129
18. Warminski J., Kecik K. (2006), Autoparametric vibrations of a nonlinear system with pendulum. Mathematical Problems in Engineering, 1-19.10.1155/MPE/2006/80705
19. Warminski J., Kecik K. (2009), Instabilities in the main parametric resonance area of mechanical system with a pendulum,Journal of Sound Vibration, 332, 612-628.10.1016/j.jsv.2008.06.042
20. Wiercigroch M., Najdecka A., Vaziri V. (2011), Nonlinear Dynamics of Pendulums System for Energy Harvestin, Vibration Problems ICOVP 2011, Book Series: Springer Proceedings in Physics, Edited by: Naprstek J., Horacek J., Okrouhlik M., Marvalova B., Verhulst F., Sawicki J.T., 139, 35-42.
21. Xu X., Pavlovskaia E. E., Wiercigroch M., Romeo F., Lenci S. (2007), Dynamic interactions between parametric pendulum and electro-dynamical shaker, ZAMM Journal of applied mathematics and mechanics, Zeitschrift für angewandte Mathematik und Mechanik, 87(2), 172–186.10.1002/zamm.200610311