2. Bonnet М. (1995), Integral equations and boundary elements. Mechanical application of solids and fluids (in French), CNRS Éditions / Éditions EYROLLES, Paris.
4. Elbert Á., Laforgia A. (1986), Monotonicity properties of the zeros of Bessel functions, SIAM Journal on Mathematical Analysis, 17, 1483-1488.10.1137/0517106
5. Eshkuvatov Z. K., Nik Long N. M. A., Abdulkawi M. (2009), Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges, Journal of Computational and Applied Mathematics, 233, 334–345.10.1016/j.cam.2009.07.034
7. Kolm P., Rokhlin V. (2001), Numerical Quadratures for Singular and Hypersingular Integrals, Computers and Mathematics with Applications, 41, 327-352.10.1016/S0898-1221(00)00277-7
10. Mikulich O. A. (2012), Stress state of plate elements with rigid inclusion of arbitrary shape at a steady-state oscillations, Naukovi notatky, 39, 118-123.
11. Mikulich O. A., Maksymovych V. M. (2011), Study of interaction holes in infinity plates at a steady-state oscillations, Naukovi notatky, 33, 164-169.
12. Mow C., Mente L. (1963): Dynamic stresses and displacements around cylindrical discontinuities due to plane harmonic shear waves, Journal of Applied Mechanics, 30, 598–604.10.1115/1.3636625
14. Panasyuk V., Savruk M., Nazarchuk Z. (1984) The method of singular integral equations in two-dimensional diffraction problems, Naukova Dumka, Kyiv.
17. Sherman D. (1962) The method of integral equations in the plane and spatial problems of static elasticity theory, Proceedings of the All-Union Congress on Theoretical and Applied Mechanics, 405-467.
18. Sidi A. (2006), Extension of a class of periodizing variable transformations for numerical integration, Mathematics of Computation, 75(253), 327–343.10.1090/S0025-5718-05-01773-4
19. Sladek J., Sladek V., Atluri S. N. (2000), Local boundary integral equation method for solving problem of elasticity with nonhomogeneous material properties, Computational mechanics, 24, 456-462.10.1007/s004660050005