Have a personal or library account? Click to login

Stress State Of Plate With Incisions Under The Action Of Oscillating Concentrated Forces

Open Access
|Nov 2015

References

  1. 1. Banerjee P. (1994) Boundary element method in engineering science, McGraw Hill, New York, London.
  2. 2. Bonnet М. (1995), Integral equations and boundary elements. Mechanical application of solids and fluids (in French), CNRS Éditions / Éditions EYROLLES, Paris.
  3. 3. Brebbia C., Telles J., Wrobel L. (1984), Boundary element techniques, Springer, New York.10.1007/978-3-642-48860-3
  4. 4. Elbert Á., Laforgia A. (1986), Monotonicity properties of the zeros of Bessel functions, SIAM Journal on Mathematical Analysis, 17, 1483-1488.10.1137/0517106
  5. 5. Eshkuvatov Z. K., Nik Long N. M. A., Abdulkawi M. (2009), Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges, Journal of Computational and Applied Mathematics, 233, 334–345.10.1016/j.cam.2009.07.034
  6. 6. Guz A.M. Kubenko V., Chernenko M. (1978) The diffraction of elastic waves, Naukova Dumka, Kyiv.10.1007/BF00883678
  7. 7. Kolm P., Rokhlin V. (2001), Numerical Quadratures for Singular and Hypersingular Integrals, Computers and Mathematics with Applications, 41, 327-352.10.1016/S0898-1221(00)00277-7
  8. 8. Kubenko V. (1967) Dynamic stress concentration around an elliptical hole, Reports of the Academy of Sciences USSR, 3, 60-64.
  9. 9. Kupradze V. (1963) Methods of potential in the theory of elasticity, Fizmatgiz, Moscow.
  10. 10. Mikulich O. A. (2012), Stress state of plate elements with rigid inclusion of arbitrary shape at a steady-state oscillations, Naukovi notatky, 39, 118-123.
  11. 11. Mikulich O. A., Maksymovych V. M. (2011), Study of interaction holes in infinity plates at a steady-state oscillations, Naukovi notatky, 33, 164-169.
  12. 12. Mow C., Mente L. (1963): Dynamic stresses and displacements around cylindrical discontinuities due to plane harmonic shear waves, Journal of Applied Mechanics, 30, 598–604.10.1115/1.3636625
  13. 13. Mushelishvili N.(1966) Some selected problems of mathematical theory of elasticity, Moscow.
  14. 14. Panasyuk V., Savruk M., Nazarchuk Z. (1984) The method of singular integral equations in two-dimensional diffraction problems, Naukova Dumka, Kyiv.
  15. 15. Pao Y., Mow C. (1971) Diffraction of elastic waves and dynamic stress concentration, Crane Russak, New York.
  16. 16. Savin G. N. (1968), Distribution of the stresses near the holes, Naukova Dumka, Kyiv.
  17. 17. Sherman D. (1962) The method of integral equations in the plane and spatial problems of static elasticity theory, Proceedings of the All-Union Congress on Theoretical and Applied Mechanics, 405-467.
  18. 18. Sidi A. (2006), Extension of a class of periodizing variable transformations for numerical integration, Mathematics of Computation, 75(253), 327–343.10.1090/S0025-5718-05-01773-4
  19. 19. Sladek J., Sladek V., Atluri S. N. (2000), Local boundary integral equation method for solving problem of elasticity with nonhomogeneous material properties, Computational mechanics, 24, 456-462.10.1007/s004660050005
  20. 20. Timoshenko S. (1967) Fluctuations in engineering, Nauka, Moscow.
DOI: https://doi.org/10.1515/ama-2015-0023 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 140 - 144
Submitted on: Mar 2, 2015
Accepted on: Oct 14, 2015
Published on: Nov 7, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2015 Vasyl’ Shvabyuk, Heorhiy Sulym, Olena Mikulich, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.