1. Akai T., Ootao Y., Tanigawa Y. (2005), Piezothermoelastic analysis of functionally graded piezoelectric cylindrical panel due to nonuniform heat supply in the circumefernetial direction, Proc. Thermal Stresses’05, 709-712.
4. Cho J. R., Shin S. W. (2004), Material composition optimization for heat-resisting FGMs by artificial neural network, Composites, A35, 585-595.10.1016/j.compositesa.2003.12.003
9. Kim J. H., Paulino G. H. (2002), Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials, ASME J. Appl. Mech., 69, 502−514.
10. Lee W. Y., Stinton D. P., Berndt C. C, Erdogan F., Lee Y.-D., Mutasin Z. (1996), Concept of functionally graded materials for advanced thermal barrier coating applications, J. Am. Ceram. Soc. 79, 3003-3012.
11. Muki R. (1957), Thermal stresses in a semi-infinite solid and a thick plate under steady distribution of temperature, Proc. Fac. Eng. Keio. Univ., 9, 42.
15. Potarescu F., Sugano Y. (1993), An improved solution to thermoelastic material design in fuctionally graded materials: Scheme to reduce thermal stresses, Comput. Mech. Appl. Mech.Eng., 109, 377-389.
17. Sneddon I. N., Lockett F. J. (1960), On the steady-state thermo-elastic problem for the half-space and the thick plate, Quart. Appl. Math., Vol. 18(2), 145−153.
19. Wang B.-L., Han J. C., Du S. Y. (2000), Crack problems for functionally graded materials under transient thermal loading, J. Thermal Stresses, 23, 143-168.10.1080/014957300280506
20. Yamanouchi M., Hirai T., Shiota I. (1990), Overall view of the P/M fabrication of fuctionally gradient materials, Proc. First Int. Symp. Functionally Gradient Materials, eds Yamanouchi et al., Sendai, Japan, 59-64.