Have a personal or library account? Click to login

On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

Open Access
|Nov 2015

References

  1. 1. Akai T., Ootao Y., Tanigawa Y. (2005), Piezothermoelastic analysis of functionally graded piezoelectric cylindrical panel due to nonuniform heat supply in the circumefernetial direction, Proc. Thermal Stresses’05, 709-712.
  2. 2. Bagri A., Eslami M. R., Samsam-Shariat B. A. (2005), Coupled thermoelasticity of functionally graded layer, Proc. Thermal Stresses’05, 721-724.
  3. 3. Chen W. F., Tong L. (2004), Sensitivity analysis of heat conduction for functionally graded materials, Mater. Design, 25, 633-672.
  4. 4. Cho J. R., Shin S. W. (2004), Material composition optimization for heat-resisting FGMs by artificial neural network, Composites, A35, 585-595.10.1016/j.compositesa.2003.12.003
  5. 5. Fung Y. C. (1965), Foundations of solid mechanics, Prentice-Hall, New Jersey.
  6. 6. Ganczarski A., Barwacz L. (2004), Notes on damage effect tensors of two-scalar variables, Int. J. Damage Mech., 13, 3, 287-295.
  7. 7. Ignaczak J. (1959), Direct determination of stresses from the stress equations of motion in elasticity, Arch. Mech. Stos., 11(5), 671−678.
  8. 8. Iljushin A. A., Lomakin W. A., Shmakov A. P. (1979), Mechanics of Continuous Media, Moscow.
  9. 9. Kim J. H., Paulino G. H. (2002), Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials, ASME J. Appl. Mech., 69, 502−514.
  10. 10. Lee W. Y., Stinton D. P., Berndt C. C, Erdogan F., Lee Y.-D., Mutasin Z. (1996), Concept of functionally graded materials for advanced thermal barrier coating applications, J. Am. Ceram. Soc. 79, 3003-3012.
  11. 11. Muki R. (1957), Thermal stresses in a semi-infinite solid and a thick plate under steady distribution of temperature, Proc. Fac. Eng. Keio. Univ., 9, 42.
  12. 12. Noda N. (1999), Thermal stresses in functionally graded materials, J. Thermal Stresses, Vol. 22(4/5), 477−512.10.1080/014957399280841
  13. 13. Nowacki W. (1970), Theory of elasticity, PWN, Warsaw.
  14. 14. Odqvist F. K. G. (1966), Mathematical theory of creep and creep rupture, Oxford, Clarendon Press.
  15. 15. Potarescu F., Sugano Y. (1993), An improved solution to thermoelastic material design in fuctionally graded materials: Scheme to reduce thermal stresses, Comput. Mech. Appl. Mech.Eng., 109, 377-389.
  16. 16. Schulz U., Bach F. W., Tegeder G. (2003), Graded coating for thermal, wear and corrosion barriers, Mater. Sci. Eng., A 362(1-2), 61−80.
  17. 17. Sneddon I. N., Lockett F. J. (1960), On the steady-state thermo-elastic problem for the half-space and the thick plate, Quart. Appl. Math., Vol. 18(2), 145−153.
  18. 18. Sternberg E., McDowell E. L. (1957), On the steady-state thermoelastic problem for the half-space, Quart. Appl. Math., 14, 381.
  19. 19. Wang B.-L., Han J. C., Du S. Y. (2000), Crack problems for functionally graded materials under transient thermal loading, J. Thermal Stresses, 23, 143-168.10.1080/014957300280506
  20. 20. Yamanouchi M., Hirai T., Shiota I. (1990), Overall view of the P/M fabrication of fuctionally gradient materials, Proc. First Int. Symp. Functionally Gradient Materials, eds Yamanouchi et al., Sendai, Japan, 59-64.
DOI: https://doi.org/10.1515/ama-2015-0022 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 135 - 139
Submitted on: Feb 24, 2015
Accepted on: Oct 14, 2015
Published on: Nov 7, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2015 Artur Ganczarski, Damian Szubartowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.