Have a personal or library account? Click to login

Application Of CFD To Modeling Of Squeeze Mode Magnetorheological Dampers

Open Access
|Nov 2015

References

  1. 1. Case D., Taheri, B., Richer, E. (2013), Multiphysics modeling of magnetorheological dampers, The International Journal of Multiphysics, Vol. 7, No. 1, 61-76.
  2. 2. Chen S. M., Bullough W. A., Ellam D. J. (2007), Examination of through flow in a radial ESF clutch, Journal of Intelligent Material Systems and Structures, Vol. 12, 1175–1179.
  3. 3. de Vicente, Juan, et al. (2011), Squeeze flow magnetorheology, Journal of Rheology (1978-present), Vol. 55, No. 4, 753-779.
  4. 4. Esmonde, H., H. See, and M. V. Swain (2009), Modelling of ER squeeze films at low amplitude oscillations, Journal of Non-Newtonian Fluid Mechanics, Vol. 161, No. 1, 101-108.
  5. 5. Farjoud, A., Ahmadian, M., Mahmoodi, N., Zhang, X., & Craft, M. (2011), Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows, Smart Materials and Structures, Vol. 20, No. 8, 085013.
  6. 6. Gołdasz J., Sapiński B. (2015), Insight into magnetorheological shock absorbers, Springer Publishing, Heidelberg.10.1007/978-3-319-13233-4
  7. 7. Gstottenbauer, N., Kainz, A., Manhartsgruber, B., Scheidl, R. (2008), Experimental and numerical studies of squeeze-mode behaviour of magnetic fluid, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 22, No. 12, 2395-2407.
  8. 8. Jolly M., Bender J. W., Carlson J. D. (1996), Properties and applications of magnetorheological fluids, Proceedings of the SPIE Conference of the International Society of Optical Engineers, Vol. 3327, 262–275.
  9. 9. Jolly M., Carlson J. D. (1996), Controllable squeeze-film damping using magnetorheological fluids, Proceedings of the 5thInternational Conference on New Actuators, Bremen, 333–336.
  10. 10. Kieburg Ch. (2010), MR Fluid Basonetic 4035, BASF Technical Information.
  11. 11. Sapiński, B., Szczęch, M. (2013), CFD model of a magnetorheological fluid in squeeze mode, acta mechanica et automatica, Vol. 7, No. 3, 180-183.
  12. 12. Sproston J. L., Rigby S. G., Wiliams E. W., Stanway R. (1994), A numerical simulation of electrorheological fluids in oscillatory compressive squeeze-flow, Journal of Physics D: Applied Physics, Vol. 2, No. 27, 338–340.
  13. 13. Tannehill J. C., Anderson D. A., Pletcher R. H. (1996), Computational fluid mechanics and heat transfer. Taylor and Francis, New York.
  14. 14. Zhang X. J., Farjoud A., Ahmadian M, Guo K. H., Craft M. (2011), Dynamic testing and modeling of an MR squeeze mount, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 15, 1717–1728.
  15. 15. Zheng, J., Li, Z., Koo, J., Wang, J. (2014), Magnetic circuit design and multiphysics analysis of a novel MR damper for applications under high velocity. Advances in Mechanical Engineering, Vol. 2014, 402501.10.1155/2014/402501
DOI: https://doi.org/10.1515/ama-2015-0021 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 129 - 134
Submitted on: May 12, 2015
Accepted on: Sep 7, 2015
Published on: Nov 7, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2015 Janusz Gołdasz, Bogdan Sapiński, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.