Have a personal or library account? Click to login
Solving Nonlinear Thermal Problems of Friction by Using Method of Lines Cover

Solving Nonlinear Thermal Problems of Friction by Using Method of Lines

By: Ewa Och  
Open Access
|May 2015

References

  1. 1. Awrejcewicz J., Pyr’yev Yu. (2009), Nonsmooth dynamics of contacting thermoelastic bodies, Springer-Verlag, New York.
  2. 2. Barber J. R. (1970), The conduction of heat from sliding solids, Int. J. Heat. Mass Tran., Vol. 13, 857-869.
  3. 3. Belyakov N. S., Nosko A. P. (2010), Nonperfect thermal contact of friction bodies, KD LIBROCOM, Moscow, (in Russian).
  4. 4. Chichinadze A. V., Braun E. D., Ginsburg A. G., Ignat’eva Z. V. (1979), Calculation, Test and Selection of Frictional Couples, Nauka, Moscow (in Russian).
  5. 5. Evtushenko O, Kuciej M., Och E. (2014 a), Influence of the thermal sensivity of materials on the temperature at friction, Mat. Sci., Vol. 50, No 1, 117-122.10.1007/s11003-014-9700-0
  6. 6. Evtushenko O., Kuciej M., Och E. (2014 b), Modeling of temperature conditions for a braking system with regard for the heat sensitivity of materials, Mat. Sci., Vol. 50, No 3, 397-405.10.1007/s11003-014-9732-5
  7. 7. Evtushenko O.O., Pir’ev Yu.O. (1999), Computation of the contact temperature and wear during braking, J. Math. Sci., Vol. 96, 2892-2896.
  8. 8. Gear C. W. (1971), Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs.
  9. 9. Hall G., Watt J. M. (1973), Modern numerical methods for ordinary differential equations, Clarendon Press, Oxford.
  10. 10. Kalin M. (2004), Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review, Materials Science and Engineering A, Vol. 374, 390-397.
  11. 11. Kirchhoff G. R. (1894), Heat theory lectures, B.G. Teubner, Leipzig (in Germany).
  12. 12. Krupowicz A. (1986), Numerical Methods of Initial Value Problems of Ordinary Differential Equations (in Polish), PWN, Warsaw.
  13. 13. Kuciej M. (2011), Accounting changes of pressure in time in onedimensional modeling the process of friction heating of disc brake, Int. J. Heat Mass Trans., Vol. 54, 468-474.
  14. 14. Kuciej M. (2012), Analytical models sof transient frictional heating, Publisher of Technical University of Bialystok, Bialystok.
  15. 15. Kushnir R. M., Popovych V. S. (2011), Heat conduction problems of thermosensitive solids under complex heat exchange. In: Heat conduction - Basic Research, V. Vikhrenko Ed., In Tech, Croatia, 131-154.
  16. 16. Nosko A.L., Belyakov N.S., Nosko A.P. (2009), Application of the generalized boundary condition to solving thermal friction problems, J. Frict. Wear, Vol. 30, 615-625.
  17. 17. Och E. (2013), Frictional Heating During Sliding of Two Semi-Spaces with Simple Thermal Nonlinearities, Acta Mech. et Autom., Vol. 7, No 4, 236-240.
  18. 18. Och E. (2014), Frictional Heating during Sliding of Two Semi-Spaces with Arbitrary Thermal Nonlinearity, Acta Mech. et Autom., Vol. 8, No 4, 204-208.
  19. 19. Olesiak Z., Pyryev Yu., Yevtushenko A. (1997), Determination of temperature and wear during braking, Wear, Vol. 210, 120-126.
  20. 20. Ozisik M. N. (2000), Finite difference methods in heat transfer, Second Ed., CRC Press, Florida, USA.
  21. 21. Podstrigach Ya. S. (1963), The temperature field in a system of rigid bodies coupled by thin interface, Inzh.-Fiz. Zh., Vol. 6, No 10, 129-136, (in Russian).
  22. 22. Pyr’yev Yu. (2004), Dynamics of contact systems with respect to heat, friction and wear, Publisher of Technical University of Lodz, Lodz.
  23. 23. Rhee S. K., Jacko M. G., Tsang P. H. S. (1991), The role of friction film in friction, wear and noise of automotive brakes, Wear, Vol. 146, No 1, 89-97.10.1016/0043-1648(91)90226-K
  24. 24. Sazonov V. S. (2008), Nonideal contact problem of nonstationary heat conduction for two half-spaces, J. Eng. Phys. Thermophys., Vol. 81, 397-408.
  25. 25. Yevtushenko A., Kuciej M., Och E. (2014a), Effect of Thermal Sensitivity of Materials of Tribojoint on Friction Temperature, J. Frict. Wear, Vol. 35, 77-83.10.3103/S1068366614020056
  26. 26. Yevtushenko A., Kuciej M., Och E. (2014b), Influence of thermal sensitivity of the pad and disk materials on the temperature during braking, Int. Comm. Heat Mass Transf., Vol. 55, 84-92.10.1016/j.icheatmasstransfer.2014.04.002
  27. 27. Yevtushenko A., Kuciej M., Och E. (2014 c), Temperature in thermally nonlinear pad-disk brake system, Int. Comm. Heat Mass Transf., Vol. 57, 274-281.10.1016/j.icheatmasstransfer.2014.08.013
  28. 28. Yevtushenko A., Kuciej M., Och E. (2015), Some methods for calculating temperature during the friction of thermosensitive materials, Numer. Heat Transf. P. A., V. 67, N 6 (2015), 696-718.
  29. 29. Yevtushenko A.A., Kuciej M. (2012), One-dimensional thermal problem of friction during braking: The history of development and actual state, Int. J. Heat Mass Tran., Vol. 55, 4118-4153.
  30. 30. Yevtushenko A.A., Kuciej M., Yevtushenko O. (2013), The boundary conditions on the sliding surface in one-dimensional transient heat problem of friction, Int. J. Heat Mass Trans., Vol. 59, No 1, 1-8.
  31. 31. Yune Y.G., Bryant M.D. (1989), Thermal evolution of hot spots in thermally nonlinear carbon graphite sliders, Trans. ASME. J. Tribology, Vol. 111, 591-596.10.1115/1.3261982
DOI: https://doi.org/10.1515/ama-2015-0007 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 33 - 37
Published on: May 15, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ewa Och, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.