Have a personal or library account? Click to login
Application of HPM to Find Analytical Solution of Coette Flow with Variable Viscosity Cover

Application of HPM to Find Analytical Solution of Coette Flow with Variable Viscosity

Open Access
|May 2015

References

  1. 1. Abbasbandy S. (2006), The application of homotopy analysis method to nonlinear equations arising in heat transfer, Physics Letter, A 360, 109-113.10.1016/j.physleta.2006.07.065
  2. 2. Allan F., Al-Khaled K. (2006), An approximation of the analytic solution of the shock wave equation, Journal of Computational and Applied Mathematics, 192, 301-309.10.1016/j.cam.2005.05.009
  3. 3. Aziz A., Na T. Y. (1984), Perturbation methods in heat transfer, Hemisphere Publishing Corp.
  4. 4. Ghosh S., Roy A., Roy D. (2007), An adaptation of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators, Computer Methods in Applied Mechanics and Engineering, 196, 1133-1153.10.1016/j.cma.2006.08.010
  5. 5. Ghotbi A. R., Barari A. Ganji D. D. (2011), Solving ratio-dependent predator-prey system with constant effort harvesting using homotopy perturbation method, Mathematical Problems in Engineering, ID 945420.
  6. 6. He J. H. (1999), Variational iteration method: A kind of nonlinear analytical technique: Some examples, International Journal of Non- Linear Mechanics, 344, 699-708.10.1016/S0020-7462(98)00048-1
  7. 7. He J. H. (2004a), Comparison of homotopy perturbation method and homotopy analysis method, Appl. Math Comput., 156, 527-39.10.1016/j.amc.2003.08.008
  8. 8. He J. H. (2004b), The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math Comput., 151, 287-92.10.1016/S0096-3003(03)00341-2
  9. 9. He J. H. (2005), Homotopy perturbation method forbifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 6(2), 207-215.
  10. 10. Jalaal M., Nejad M. G., Jalili P. (2011), Homotopy perturbation method for motion of a spherical solid particle in plane couette fluid flow, Computers and Mathematics with Applications, 61, 2267-2270.10.1016/j.camwa.2010.09.042
  11. 11. Lesnic D. (2005), Decomposition methods for non-linear, noncharacteristic Cauchy heat problems, Communications in Nonlinear Science and Numerical Simulation, 10, 581-596.10.1016/j.cnsns.2004.02.002
  12. 12. Moghimi S. M., Ganji D. D., Bararnia H., Hosseini M., Jalaal M. (2011), Homotopy perturbation method for nonlinear MHD Jeffery- Hamel problem, Computers and Mathematics with Applications, 61, 2213-2216.10.1016/j.camwa.2010.09.018
  13. 13. Pamuk S. (2005), Solution of the porous media equation by Adomian's decomposition method, Physics Letters, A 344, 184-188.10.1016/j.physleta.2005.06.068
  14. 14. Rashidi R. R., Beg O.A., Rastegari M.T., Mehmood A. (2012), Homotopy study of buoyancy-induced flow of non-newtonian fluids over a non-isothermal surface in a porous medium, International Journal of Applied Mathematics and Mechanics, 8, 34-52.
  15. 15. Sharma P. R., Methi G. (2010), Solution of coupled nonlinear partial differential equations using homotopy perturbation method, International Journal of Applied Mathematics and Mechanics, 6, 33-49.
  16. 16. Turian R. M., Bird R. B. (1963), Viscous heating in the cone-andplate viscometer II, Chem. Eng. Sci., 18, 689-96.
DOI: https://doi.org/10.1515/ama-2015-0001 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 5 - 8
Published on: May 15, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Alireza Azimi, Mohammadreza Azimi, Amirhossein Javanfar, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.