Have a personal or library account? Click to login
Phytoremediation potential of wild plants growing on soil contaminated with heavy metals Cover

Phytoremediation potential of wild plants growing on soil contaminated with heavy metals

Open Access
|Oct 2016

References

  1. 1. Mühlbachová G, Száková J, Tlustoš P. The heavy metal availability in long-term polluted soils as affected by EDTA and alfalfa meal treatments. Plant Soil Environ 2012;58:551-6. [displayed 4 August 2016]. Available at http://www.agriculturejournals.cz/publicFiles/78767.pdf10.17221/524/2012-PSE
  2. 2. Vidaković-Cifrek Ž, Tkalec M, Šikić S, Tolić S, Lepeduš H, Pevalek-Kozlina B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Arh Hig Rada Toksikol 2015;66:141-52. doi: 10.1515/aiht-2015-66-2618
  3. 3. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003;50:775-80. doi: 10.1016/S0045-6535(02)00232-1
  4. 4. Freitas H, Prasad MNV, Pratas J. Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environ Int 2004;30:65-72. doi: 10.1016/ S0160-4120(03)00149-1
  5. 5. Del Rio-Celestino M, Font R, Moreno-Rojas R, De Haro- Bailon A. Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crop Prod 2006;24:230-37. doi: 10.1016/j.indcrop.2006.06.013
  6. 6. Moors HME, DijkemaPJG. Embedded industrial production systems: Lessons from waste management in zinc production. Technol Forecast Soc 2006;73:250-65.doi: 10.1016/j. techfore.2004.03.006
  7. 7. Bozkurt S. Assessment of the Long-Term Transport Processes and Chemical Evolution in Waste Deposits. [PhD thesis]. Stockholm: Royal Institute of Technology; 2000.
  8. 8. Bolan N, Kunhikrishnanc A, Thangarajana R, Kumpiened J, Parke J, Makinof T, Kirkhamg BM, Scheckelh K. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J Hazard Mater 2014;266:141-66. doi: 10.1016/j.jhazmat.2013.12.018
  9. 9. Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 2003;256:265-72. doi: 10.1023/A:1026100707797
  10. 10. Madejón P, Murillo JM, Marañón T, Cabrera F, López R. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the Aznalcollar mine spill (SW Spain). Sci Total Environ 2002;290:105-20. doi: 10.3184/095422914X14141 630849689
  11. 11. Yoon J, Cao X, Zhou Q, Ma QL. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 2006;368:456-64. doi: 10.1016/j. scitotenv.2006.01.016
  12. 12. ZayedМА, Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil 2003;249:139-56. doi: 10.1023/A:1022504826342
  13. 13. Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metal elements: a review of their distribution, ecology, and phytochemistry. Biorecovery 1989;1:81-126.
  14. 14. Antonkiewicz J, Para A. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Int J Phytoremediation 2016;18:245-50. doi: 10.1080/15226514.2015.1078771
  15. 15. Robinson B, Schulin R, Nowak B, Roulier S, Menon M, Clothier B, Green S, Mills T. Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 2006;80:221-34.
  16. 16. España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernandez-Zarate G, Alzate- GaviriaLj. Vinasses: characterization and treatments. Waste Manag Res 2011;29:1235-50. doi: 10.1177/0734242X 10387313
  17. 17. Pulford ID, Watson C. Phytoremediation of heavy metal contaminated land by trees - a review. Environ Int 2003;29:529-40. doi: 10.1016/S0160-4120(02)00152-6
  18. 18. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson MN, Mosca G. Phytoremediation trials on metal- and arseniccontaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 2009;157:887-94. doi 10.1016/j.envpol.2008.11.00310.1016/j.envpol.2008.11.00319073356
  19. 19. Obernberger I, Supancic K. Possibilities of ash utilisation from biomass combustion plants. In: Proceedings of the 17th European Biomass Conference & Exhibition, From Research to Industry and Markets; 29 June - 3 July 2009; Hamburg, Germany. Florence: ETA-Florence Renewable Energies; 2009. p. 2373-84.
  20. 20. Van Eijk RJ, Obernberger I, Supancic K. Options for increased utilization of ash from biomass combustion and co-firing, 30102040-PGR/R&E 11-2142, IEA Bioenergy Task 32, Deliverable D4, 2012. [displayed 05 May 2014]. Available at http://www.ieabcc.nl/publications/Ash_Utilization_KEMA.pdf
  21. 21. Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels - significance and impact. Biomass Bioenerg 2006;30:973-82. doi: 10.1016/j.biombioe.2006.06.011
  22. 22. JovanovićLj, Marković M, Stojiljković D, Radovanović M, Cupać S, Despotović S, Ilić S, Drazić D, Bojović S. Usage of crops and wild plants growing on polluted soil as an energy source. In: Procceeding of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection; 10-14 May 2004; Roma, Italy 2004. ETA-Florence, Italy and WIPMunich, Germany 2004. p. 2529-33.
  23. 23. Avramov L, Nakalamić A, Todorović N, Petrović N, Žunić D. Climate of the vineyard zones and the associated vine varieties of Yugoslavia. J AgricSci (Belgrade) 2000;45:29-35. doi: 10.2298/JAS0601061P
  24. 24. U.S. Environmental Protection Agency (US EPA). Method 3050b; Acid Digestion of Sediments, Sludges, and Soils. Washington (DC): U.S. EPA; 1996.
  25. 25. U.S. Environmental Protection Agency (US EPA). Method 200.7; Trace Elements in Water, Solids and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-OES. Washington (DC): U.S. EPA; 2001.
  26. 26. SRPS EN ISO 11885:2011 - Water quality - Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). Belgrade: Institute for Standardization of Serbia; 2011.
  27. 27. SRPS EN ISO 11969:2009 - Water quality - Determination of arsenic - Atomic absorption spectrometric method (hydride technique). Belgrade: Institute for Standardization of Serbia; 2009
  28. 28. EN 14780:2011 - Solid biofuels - Methods for sample preparation. Brussels: European Standardization Organizations; 2011.
  29. 29. EN 14775:2011 - Solid biofuels - Determination of ash content. Brussels: European Standardization Organizations; 2011.
  30. 30. ISO 1171:2010 - Solid mineral fuels - Determination of ash. Geneva: International Organization for Standardization; 2010.
  31. 31. Dare P, Gifford H, Hooper JR, Clemens HA, Damiano FL, Gong D, Matheson WT. Combustion performance of biomass residue and purpose grown species. Biomass Bioenerg 2001;21:277-87. doi: 10.1016/S0961-9534(01)00039-3
  32. 32. EN 14918:2009 - Solid biofuels - Determination of calorific value. Brussels: European Standardization Organizations; 2009.
  33. 33. SRPS EN 15104:2012 - Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen - Instrumental methods. Belgrade, Institute for Standardization of Serbia; 2012.
  34. 34. Uredba o programu sistemskog praćenja kvaliteta zemljišta, indikatorima za ocenu rizika od degradacije zemljišta i metodologiji za izradu remedijacionih programa.[Regulation on a program of systematic monitoring of soil quality, indicators for assessing the risk of soil degradation and methodology for development of remediation programs, in Serbian]. Službeni glasnik RS 88/2010.
  35. 35. Crnković MD. Analiza uticaja prisutnih teških metala I policikličnih aromatičnih ugljovodonika na kvalitet zemljišta u Beogradu [Analysis of the impact of present trace metals and polycyclic aromatic hydrocarbons on the soil quality in Belgrade, in Serbian]. [MSc thesis]. Belgrade: University of Belgrade, Faculty of Technology and Metallurgy; 2005.
  36. 36. Mertens J, Vervaeke P, De Schrijver A, Luyssaert S. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 2004;326:209-15. doi: 10.1016/j.scitotenv.2003.12.010
  37. 37. Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 2004;131:485-94. doi: 10.1016/j. envpol.2004.02.009
  38. 38. Sebastiani L, Scebba F, Tognetti R. Heavy metal accumulation and growth responses in poplar clones Eridano (Populusdeltoides ˟ maximowiczii) and I-214 (P. ˟ euramericana) exposed to industrial waste. Environ Exp Bot 2004;52:79-88. doi: 10.1016/j.envexpbot.2004.01.003
  39. 39. Laureysens I, Pellis A, Willems J, Ceulemans R. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenerg 2005;29:10-21. doi: 10.1016/j.biombioe.2005.02.005
  40. 40. Yang X, Feng Y, He Z, StoffellaPJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 2005;18:339-53. doi: 10.1016/j. jtemb.2005.02.007
  41. 41. Brunner I, Luster J, Günthardt-Goerg MS, Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 2008;152:559-68. doi: 10.1016/j.envpol.2007.07.006
  42. 42. Wang Z, MacFarlane WD. Evaluating the biomass production of coppiced willow and poplar clones in Michigan, USA, over multiple rotations and different growing conditions. Biomass Bioenerg 2012:46:380-8. doi: 10.1016/j. biombioe.2012.08.003
  43. 43. Kfayatullah Q, Tahir Shah M, Arfan M. Biogeochemical and environmental study of the chromite-rich ultramafic terrain of Malakand area, Pakistan. Environ Geol 2001;40:1482-6. doi: 10.1007/s002540100374
  44. 44. Freitas H, Prasad MNV, Pratas J. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulationrelevance to the management of mine environment. Chemosphere 2004;54:1625-42. doi: 10.1016/j. chemosphere.2003.09.045
  45. 45. Arslan H, Güleryüz G, Leblebici Z, Kırmızı S, Aksoy A. Verbascum bombyciferum Boiss. (Scrophulariaceae) as possible bio-indicator for the assessment of heavy metals in the environment of Bursa, Turkey. Environ Monit Assess 2010;163:1105-13. doi 10.1007/s10661-009-0820-110.1007/s10661-009-0820-119274485
  46. 46. Antonkiewicz J, Kołodziej B, Bielińska E. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res Int 2016;23:9505-17. doi: 10.1007/s11356-016-6175-6
  47. 47. Narodoslawsky M, Obernberger I. From waste to raw material - the route from biomass to wood ash for cadmium and other heavy metals. J Hazard Mater 1996:50:157-68. doi: 10.1016/0304-3894(96)01785-2
DOI: https://doi.org/10.1515/aiht-2016-67-2829 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 229 - 239
Submitted on: May 1, 2016
Accepted on: Sep 1, 2016
Published on: Oct 15, 2016
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Vladica Čudić, Dragoslava Stojiljković, Aleksandar Jovović, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.