Have a personal or library account? Click to login

Simple graph-theoretical model for flavonoid binding to P-glycoprotein / Jednostavan graf-teorijski model vezivanja flavonoida za P-glikoprotein / Jednostavan graf-teorijski model vezivanja flavonoida za P-glikoprotein

Open Access
|Apr 2016

References

  1. 1. Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 1995;33:1061-80. doi: 10.1016/0278-6915(95)00077-110.1016/0278-6915(95)00077-1
  2. 2. Scott BC, Butler J, Halliwell B, Aruoma OI. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic Res Commun 1993;19:241-53. PMID: 750745610.3109/107157693090565127507456
  3. 3. Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F, Lima JLFC, Reis S, Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Medic 2005;39:1099-108. doi: 10.1016/j.freeradbiomed. 2005.05.028
  4. 4. Cohen SD, Kennedy JA. Plant metabolism and the environment: Implications for managing phenolics. Crit Rev Food Sci Nutr 2010;50:620-43. doi: 10.1080/1040839 0802603441
  5. 5. Vinson JA. Flavonoids in foods as in vitro and in vivo antioxidants. Adv Exp Med Biol 1998;439:151-64. doi: 10.1007/978-1-4615-5335-9_1110.1007/978-1-4615-5335-9_119781301
  6. 6. Johnson J, de Mejia EG. Dietary factors and pancreatic cancer: The role of food bioactive compounds. Mol Nutr Food Res 2011;55:58-73. doi: 10.1002/mnfr.20100042010.1002/mnfr.20100042021207513
  7. 7. Perron NR, Brumaghin JL. A review of the antioxidant mechanisms of polyphenol Compounds related to iron binding. Cell Biochem Biophys 2009;53:75-100. doi: 10.1007/s12013-009-9043-x10.1007/s12013-009-9043-x19184542
  8. 8. Xiao J, Chen T, Cao H, Chen L, Yang F. Molecular propertyaffinity relationship of flavonoids and flavonoids for HSA in vitro. Mol Nutr Food Res 2011;55:310-7. doi: 10.1002/ mnfr.20100020810.1002/mnfr.20100020820718051
  9. 9. Shi J, Cao H. Molecular structure-affinity relationship of dietary flavonoids for bovine serum albumin. Rev Bras Farmacogn 2011;21:594-600. doi: 10.1590/S0102-695X 2011005000118
  10. 10. Xiao J, Cao H, Chen T, Yang F, Liu C, Xu X. Molecular property-binding affinity relationship of flavonoids for common rat plasma proteins in vitro. Biochemie 2011;93:134-40. doi: 10.1016/j.biochi.2010.08.01310.1016/j.biochi.2010.08.01320831890
  11. 11. Xiao J, Mao F, Yang F, Zhao Y, Zhang C, Yamamoto K. Interaction of dietary polyphenols with bovine milk proteins: Molecular structure-affinity relationship and influencing bioactivity aspects. Mol Nutr Food Res 2011;55:1637-45. doi: 10.1002/mnfr.20110028010.1002/mnfr.20110028021805622
  12. 12. Leveille-Webster CR, Arias IM. The biology of the P-glycoproteins. J Membr Biol 1995;143:89-102. doi: 10.1007/BF0023465510.1007/BF002346557731035
  13. 13. Simon SM, Schindler M. Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci USA 1994;91:3497-504. PMID: 790960210.1073/pnas.91.9.3497436077909602
  14. 14. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427. doi: 10.1146/annurev.bi.62. 070193.002125
  15. 15. Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 1990;38:1277-87. PMID: 197490010.1177/38.9.19749001974900
  16. 16. Li Y, Wang Y, Yang L, Zhang S, Liu C. Structural determinants of flavones interacting with the C-terminal nucleotidebinding domain as P-glycoprotein inhibitors. Internet Electron J Mol Des 2006;5:1-12.
  17. 17. Kothandan G, Gadhe CG, Madhaven T, Choi CH, Cho SJ. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. Eur J Med Chem 2011;46:4078-88. doi: 10.1016/j.ejmech. 2011.06.008
  18. 18. Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt P-A. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Eur J Pharm Sci 2009;36:254-64. doi: 10.1016/j.ejps.2008.09.00910.1016/j.ejps.2008.09.00918955135
  19. 19. Raos N, Miličević A. Estimation of stability constants of coordination compounds using models based on topological indices. Arh Hig Rada Toksikol 2009;60:123-8. doi: 10.2478/10004-1254-60-2009-192310.2478/10004-1254-60-2009-192319329384
  20. 20. Miličević A, Raos N. Prediction of stability constants for copper(II) binding to tetrapeptides containing histidyl residue with graph-theoretical method. Int J Chem Model 2014;6:301-9.
  21. 21. Miličević A, Raos N. Graph-theoretical modelling of stability constants of copper(II) complexes with tripeptides containing glycine, glutamic acid, and histidine. Bull Chem Soc Jpn 2015;88:490-5. doi: 10.1246/bcsj.2014035810.1246/bcsj.20140358
  22. 22. Miličević A, Raos N. Modelling of copper(II) binding to pentapeptides related to atrial natriuretic factor using the 3χv connectivity index. Arh Hig Rada Toksikol 2015;66:165-70. doi: 10.1515/aiht-2015-66-263110.1515/aiht-2015-66-263126110479
  23. 23. Kier LB, Hall LH. Molecular Connectivity in Chemistry and Drug Research. New York: Academic Press; 1976.
  24. 24. Hall LH, Kier LB. The relation of molecular connectivity to molecular volume and biological activity. Eur J Med Chem 1981;16:399-407.
  25. 25. Miličević A, Nikolić S, Trinajstić N. Toxicity of aliphatic ethers: A comparative study. Mol Diversity 2006;10:95-9. doi: 10.1007/s11030-005-9006-010.1007/s11030-005-9006-016710807
  26. 26. Medić-Šarić M, Maleš Ž, Šarić S, Brantner A. Quantitative modeling of flavonoid glycosides isolated from Paliurus spina-christi Mill. Croat Chem Acta 1996;69:1603-16.
  27. 27. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV. Virtual computational chemistry laboratory-design and description. J Comput Aided Mol Des 2005;19:453-63. doi: 10.1007/ s10822-005-8694-y10.1007/s10822-005-8694-y16231203
  28. 28. Virtual Computational Chemistry Laboratory [display 14 March 2016]. Available at http://www.vcclab.org
  29. 29. Enhanced NCI Database Browser 2.2 [displayed 14 March 2016]. Available at http://cactus.nci.nih.gov/ncidb2.2/
  30. 30. Kier LB, Hall LH. Molecular connectivity VII: Specific treatment to heteroatoms. J Pharm Sci 1976;65:1806-9. doi: 10.1002/jps.260065122810.1002/jps.26006512281032667
  31. 31. Kier LB, Hall LH. Molecular Connectivity in Structure- Activity Analysis. New York: Willey; 1986.
  32. 32. Randić M. On history of the Randic index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 2008;59:5-124.
  33. 33. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f10.1021/ci980090f
DOI: https://doi.org/10.1515/aiht-2016-67-2779 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 55 - 60
Submitted on: Feb 1, 2016
Accepted on: Mar 1, 2016
Published on: Apr 15, 2016
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Ante Miličević, Nenad Raos, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.