Have a personal or library account? Click to login
Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper / Rast i fotosinteza u vodene leće (Lemna minor L.) izložene kadmiju u kombinaciji s cinkom ili bakrom Cover

Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper / Rast i fotosinteza u vodene leće (Lemna minor L.) izložene kadmiju u kombinaciji s cinkom ili bakrom

Open Access
|Jun 2015

References

  1. 1. Felix-Henningsen P, Urushadze T, Steffens D, Kalandadze B, Narimanidze E. Uptake of heavy metals by food crops from highly-polluted Chernozem-like soils in an irrigation district south of Tbilisi, eastern Georgia. Agronomy Research 2010;8:781-95.
  2. 2. Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol 2005;17:21-34. doi: 10.1590/ S1677-0420200500010000310.1590/S1677-04202005000100003
  3. 3. Prince WSPM, Senthil Kumar P, Doberschutz KD, Subburam V. Cadmium toxicity in mulberry plants with special reference to the nutritional quality of leaves. J Plant Nutr 2002;25:689-700. doi: 10.1081/PLN-12000295210.1081/PLN-120002952
  4. 4. Nazar R, Iqbal N, Masood A, Khan MlR, Syeed S, Khan NA.
  5. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 2012;3:1476-89. doi: 10.4236/ ajps.2012.31017810.4236/ajps.2012.310178
  6. 5. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review. Environ Pollut 1997;98:29-36. doi: 10.1016/S0269-7491(97)00110-310.1016/S0269-7491(97)00110-3
  7. 6. Siedlecka A. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 1995;64:265-72. doi: 10.5586/asbp.1995.03510.5586/asbp.1995.035
  8. 7. Tran TA, Popova LP. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 2013;37:1-13. doi: 10.3906/bot-1112-1610.3906/bot-1112-16
  9. 8. Aravind P, Prasad MNV. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Sci 2004;166:1321-7. doi: 10.1016/j.plantsci.2004.01.01110.1016/j.plantsci.2004.01.011
  10. 9. Parmar P, Kumari N, Sharma V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 2013;54:45. doi: 10.1186/1999-3110-54-4510.1186/1999-3110-54-45
  11. 10. Prasad MNV. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 1995;35:525-45. doi: 10.1016/0098-8472(95)00024-010.1016/0098-8472(95)00024-0
  12. 11. Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina B, Ljubešić N.
  13. Cadmium-induced responses in duckweed Lemna minor L.
  14. Acta Physiol Plant 2008;30:881-90. doi: 10.1007/s11738-008-0194-y10.1007/s11738-008-0194-y
  15. 12. Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM.
  16. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 2009;150:229-43. doi: 10.1104/ pp.108.13152410.1104/pp.108.131524267572919279198
  17. 13. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 2002;53:1351-65. doi: 10.1093/ jexbot/53.372.135110.1093/jxb/53.372.1351
  18. 14. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 2003;41:391-7. doi: 10.1016/S0981-9428(03)00035-410.1016/S0981-9428(03)00035-4
  19. 15. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol 2007;173:677-702. doi: 10.1111/j.1469-8137.2007.01996.x10.1111/j.1469-8137.2007.01996.x
  20. 16. Welch RM. Micronutrient nutrition of plants. Crit Rev Plant Sci 1995;14:49-82. doi: 10.1080/0735268950970192210.1080/07352689509701922
  21. 17. Maksymiec W. Effect of copper on cellular processes in higher plants. Photosynthetica 1997;34:321-42. doi: 10.1023/A:100681881552810.1023/A:1006818815528
  22. 18. Babu TS, Marder JB, Tripuranthakam S, Dixon DG, Greenberg BM. Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ Toxicol Chem 2001;20:1351-8. doi: 10.1002/etc.562020062610.1002/etc.5620200626
  23. 19. Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 2009;91:1-9. doi: 10.1016/j. aquatox.2008.09.009
  24. 20. Khellaf N, Zerdaoui M. Growth response of the duckweed Lemna minor to heavy metal pollution. Iran J Environ Health Sci Eng 2009;6:161-6.
  25. 21. Yruela I. Copper in plants. Braz J Plant Physiol 2005;17:145-56. doi: 10.1590/S1677-0420200500010001210.1590/S1677-04202005000100012
  26. 22. Hewitt EJ. Sand and Water Culture Method Used in the Study of Plant Nutrition, 2nd ed. Technical Communication No 22.
  27. Farnham Royal (UK): Commonwealth Agricultural Bureaux;
  28. 1966.
  29. 23. Chaoui A, Ghorbal MH, El Ferjani E. Effects of cadmiumzinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci 1997;126:21-8. doi: 10.1016/S0168-9452(97)00090-310.1016/S0168-9452(97)00090-3
  30. 24. Megateli S, Semsari S, Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 2009;72:1774-80. doi: 10.1016/j.ecoenv.2009.05.00410.1016/j.ecoenv.2009.05.00419505721
  31. 25. Khellaf N, Zerdaoui M. Growth response of L. gibba (duckweed) to copper and nickel phytoaccumulation.
  32. Ecotoxicology 2010;19:1363-8. doi: 10.1007/s10646-010-0522-z10.1007/s10646-010-0522-z20680456
  33. 26. Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K.
  34. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 2001;161:881-9. doi: 10.1016/S0168-9452(01)00478-210.1016/S0168-9452(01)00478-2
  35. 27. Hassan MJ, Zhang G, Wu F, Wei K, Chen Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 2005;168:255-61. doi: 10.1002/ jpln.20042040310.1002/jpln.200420403
  36. 28. An YJ, Kim YM, Kwon TI, Jeong SW. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 2004;326:85-93. doi: 10.1016/j.scitotenv.2004.01.00210.1016/j.scitotenv.2004.01.002
  37. 29. Aravind P, Prasad MNV. Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 2005;17:3-20. doi: 10.1590/ S1677-0420200500010000210.1590/S1677-04202005000100002
  38. 30. Aravind P, Prasad MNV, Malec P, Waloszek A, Strzałka K.
  39. Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 2009;23:50-60. doi: 10.1016/j.jtemb.2008.10.00210.1016/j.jtemb.2008.10.002
  40. 31. Balen B, Tkalec M, Šikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Ž. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 2011;20:815-26. doi: 10.1007/s10646-011-0633-110.1007/s10646-011-0633-1
  41. 32. Cvjetko P, Tolić S, Šikić S, Balen B, Tkalec M, Vidaković- Cifrek Ž, Pavlica M. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.) Arh Hig Rada Toksikol 2010;61:287-96. doi: 10.2478/10004-1254-61-2010-205910.2478/10004-1254-61-2010-2059
  42. 33. Lewis MA. Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 1995;87:319-36. doi: 10.1016/0269-7491(94)P4164-J10.1016/0269-7491(94)P4164-J
  43. 34. Krajnčič B, Devidé Z. Report on photoperiodic responses in Lemnaceae from Slovenia. Berichte des Geobot Inst ETH Stiftung Rübel (Zürich) 1980;47:75-86.
  44. 35. Pirson A, Seidel F. Zell- und stoffwechselphysiologiche Untersuchungen an der Wurzel von Lemna minor unter besonderer Berucksichtigung von Kalium- und Calciummangel [Cell metabolism and physiology in Lemna minor root deprived of potassium and calcium, in German].
  45. Planta 1950;38:431-73.10.1007/BF01928941
  46. 36. ISO 20079;2005 - Water quality - Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) - Duckweed growth inhibition test. Geneva: International Organization for Standardization; 2005.
  47. 37. ISO 11885;2009 - Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Geneva: International Organization for Standardization; 2009.
  48. 38. Rahmani GNH, Sternberg SPK. Bioremoval of lead from water using Lemna minor. Bioresour Technol 1999;70:225-30. doi: 10.1016/S0960-8524(99)00050-410.1016/S0960-8524(99)00050-4
  49. 39. Ensley HE, Barber JT, Polito MA, Oliver AI. Toxicity and metabolism of 2,4-dichlorophenol by the aquatic angiosperm Lemna gibba. Environ Toxicol Chem 1994;13:325-31. doi: 10.1002/etc.562013021710.1002/etc.5620130217
  50. 40. Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 1987;148:350-82. doi: 10.1016/0076-6879(87)48036-110.1016/0076-6879(87)48036-1
  51. 41. Maxwell K, Johnson GN. Chlorophyll fluorescence - a practical guide. J Exp Bot 2000;51:659-68. doi: 10.1093/ jexbot/51.345.65910.1093/jexbot/51.345.659
  52. 42. Liu C-W, Lin K-H, Kuo Y-M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 2003;313:77-89. doi: 10.1016/S0048-9697(02)00683-610.1016/S0048-9697(02)00683-6
  53. 43. Kwan KHM, Smith S. Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna minor L. New Phytol 1991;117:91-102. doi: 10.1111/j.1469-8137.1991. tb00948.x
  54. 44. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 2013;35:1281-9. doi: 10.1007/s11738-012-1167-810.1007/s11738-012-1167-8
  55. 45. Shaw BP, Sahu SK, Mishra RK. Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV, editor. Heavy metal stress in plants: from biomolecules to ecosystems. Berlin, Heidelberg: Springer; 2004. p. 84-126.10.1007/978-3-662-07743-6_4
  56. 46. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006;88:1707-19. doi: 10.1016/j.biochi.2006.07.00310.1016/j.biochi.2006.07.003
  57. 47. Palmer CM, Guerinot ML. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 2009;5:333-40. doi: 10.1038/nchembio.16610.1038/nchembio.166
  58. 48. Sun JY, Shen ZG. [Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance, in Chinese]. Ying Yong Sheng Tai Xue Bao 2007;18:2605-10. PMID: 18260471
  59. 49. Myśliva-Kurdziel B, Prasad MNV, Strzalka K. Photosynthesis in heavy metal stressed plants. In: Prasad MNV, editor. Heavy metal stress in plants: from biomolecules to ecosystems.
  60. Berlin, Heidelberg: Springer; 2004. p. 146-81.
  61. 50. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ 1990;13:195-206. doi: 10.1111/j.1365-3040.1990.tb01304.x10.1111/j.1365-3040.1990.tb01304.x
  62. 51. Ralph PJ, Burchett MD. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 1998;103:91-101. doi: 10.1016/S0269-7491(98)00121-310.1016/S0269-7491(98)00121-3
  63. 52. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001;212:475-86. doi: 10.1007/ s00425000045810.1007/s004250000458
  64. 53. Rashid A, Bernier M, Pazdernick L, Carpentier R. Interaction of Zn2+ with the donor side of Photosystem II. Photosynth Res 1991;30:123-30. doi: 10.1007/BF0004201010.1007/BF00042010
  65. 54. Krämer U, Talke IN, Hanikenne M. Transition metal transport. FEBS Lett 2007;581:2263-72. doi:10.1016/j. febslet.2007.04.010
  66. 55. Frankart C, Eullaffroy P, Vernet G. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol Environ Saf 2002;53:439-45. doi: 10.1016/S0147-6513(02)00003-910.1016/S0147-6513(02)00003-9
  67. 56. Tkalec M, Peharec Štefanić P, Cvjetko P, Šikić S, Pavlica M, Balen B. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS ONE 2014;9:e87582. doi: 10.1371/journal. pone.0087582
DOI: https://doi.org/10.1515/aiht-2015-66-2618 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 141 - 152
Submitted on: Jan 1, 2015
Accepted on: May 1, 2015
Published on: Jun 25, 2015
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Željka Vidaković-Cifrek, Mirta Tkalec, Sandra Šikić, Sonja Tolić, Hrvoje Lepeduš, Branka Pevalek-Kozlina, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.